e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are available for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in airtight and durable steel casing are perfect for use in variable and difficult climate conditions, including snow and rain more information...

magnetic holders

Magnetic holders can be used to improve manufacturing, underwater discoveries, or locating space rocks made of ore check...

Shipping is shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships in 3 days

UMGZ 32x18x8 [M6] GZ / N38 - magnetic holder external thread

magnetic holder external thread

Catalog no 190324

GTIN: 5906301813835

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

18 mm

Height [±0,1 mm]

8 mm

Weight

40 g

Load capacity

34 kg / 333.43 N

17.98 with VAT / pcs + price for transport

14.62 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
14.62 ZŁ
17.98 ZŁ
price from 30 pcs
13.74 ZŁ
16.90 ZŁ
price from 60 pcs
12.87 ZŁ
15.82 ZŁ

Need advice?

Pick up the phone and ask +48 22 499 98 98 or drop us a message via our online form the contact form page.
Parameters as well as shape of neodymium magnets can be checked on our magnetic calculator.

Same-day shipping for orders placed before 14:00.

UMGZ 32x18x8 [M6] GZ / N38 - magnetic holder external thread

Specification/characteristics UMGZ 32x18x8 [M6] GZ / N38 - magnetic holder external thread
properties
values
Cat. no.
190324
GTIN
5906301813835
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
18 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
40 g [±0,1 mm]
Load capacity ~ ?
34 kg / 333.43 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This type of holder has a protruding threaded stud, making it ideal for mounting in through-holes. Thanks to this, you get a solid, magnetized mounting point. Used to mount sensors, panels, and display elements.
The bolt is firmly seated, but exercise moderation when tightening the nut. Do not use the magnet as a structural bolt carrying huge mechanical loads. The magnet itself is protected by a steel cup and is very resistant to impact.
The maximum operating temperature is 80 degrees Celsius for the standard version. We also offer holders made of ferrite magnets (resistant up to 200°C) or special high-temperature versions. Remember that even momentary overheating can weaken the holder.
We use standardized threads that fit typical nuts available in stores. Ensure the thread length is sufficient to pass through the hole in your material. The thread is made of galvanized steel.
By shielding the sides and top, all magnet power is directed downwards, giving higher lifting capacity. This force drops very quickly with increasing distance (air gap).

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They have constant strength, and over more than 10 years their attraction force decreases symbolically – ~1% (in testing),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • By applying a bright layer of silver, the element gains a clean look,
  • Magnetic induction on the surface of these magnets is notably high,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for precise shaping as well as adaptation to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Important function in cutting-edge sectors – they are used in hard drives, rotating machines, medical equipment along with other advanced devices,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall robustness,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we advise waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is difficult,
  • Health risk linked to microscopic shards may arise, if ingested accidentally, which is important in the health of young users. Additionally, miniature parts from these devices may complicate medical imaging when ingested,
  • In cases of mass production, neodymium magnet cost is a challenge,

Highest magnetic holding forcewhat contributes to it?

The given strength of the magnet corresponds to the optimal strength, measured under optimal conditions, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • under standard ambient temperature

Determinants of lifting force in real conditions

The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, however under shearing force the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.

Be Cautious with Neodymium Magnets

Neodymium magnets are particularly fragile, resulting in damage.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Neodymium magnets should not be around children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are the strongest magnets ever invented. Their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Exercise caution!

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98