tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all magnesy on our website are in stock for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase very strong magnet? Magnet holders in solid and airtight steel enclosure are excellent for use in variable and difficult weather conditions, including during rain and snow read...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater exploration, or searching for meteorites made of ore more...

Shipping is always shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGZ 32x18x8 [M6] GZ / N38 - magnetic holder external thread

magnetic holder external thread

Catalog no 190324

GTIN: 5906301813835

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

18 mm

Height [±0,1 mm]

8 mm

Weight

40 g

Load capacity

34 kg / 333.43 N

17.98 with VAT / pcs + price for transport

14.62 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
14.62 ZŁ
17.98 ZŁ
price from 30 pcs
13.74 ZŁ
16.90 ZŁ
price from 60 pcs
12.87 ZŁ
15.82 ZŁ

Can't decide what to choose?

Pick up the phone and ask +48 22 499 98 98 otherwise send us a note through request form the contact section.
Lifting power as well as structure of a neodymium magnet can be calculated with our magnetic mass calculator.

Same-day processing for orders placed before 14:00.

UMGZ 32x18x8 [M6] GZ / N38 - magnetic holder external thread

Specification/characteristics UMGZ 32x18x8 [M6] GZ / N38 - magnetic holder external thread
properties
values
Cat. no.
190324
GTIN
5906301813835
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
18 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
40 g [±0,1 mm]
Load capacity ~ ?
34 kg / 333.43 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic holders with neodymium magnets with external thread are modern accessories, used in many industries, such as construction, light industry, or advertising. Their design relies on a high-performance NdFeB magnet, embedded within a durable steel housing protected by an anti-corrosion layer. The external thread ranging from M3–M10 enables installation onto compatible surfaces, which enables to screw in nameplates, lighting, tools. Thanks to a focused magnetic field, such mounts offer a pulling strength from 3 to 68 kg, depending on. Their use include both workshops and DIY projects. Certain models feature a rubber coating, that protects surfaces from scratches and increases grip. Note, however, that NdFeB magnets are brittle and are prone to cracking under over-tightened mounting. Caution during installation is recommended, and they should be stored away from magnetic cards and electronic devices. For best quality, it is advisable to choose certified products.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their exceptional pulling force, neodymium magnets offer the following advantages:

  • Their power is maintained, and after around ten years, it drops only by ~1% (according to research),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • Thanks to the shiny finish and silver coating, they have an elegant appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for customized forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Important function in modern technologies – they are utilized in data storage devices, electric motors, medical equipment along with sophisticated instruments,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of NdFeB magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we recommend waterproof types made of non-metallic composites,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing threads directly in the magnet,
  • Safety concern from tiny pieces may arise, in case of ingestion, which is important in the protection of children. It should also be noted that miniature parts from these magnets can disrupt scanning if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Breakaway strength of the magnet in ideal conditionswhat affects it?

The given lifting capacity of the magnet represents the maximum lifting force, determined in a perfect environment, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Key elements affecting lifting force

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the holding force is lower. In addition, even a small distance {between} the magnet’s surface and the plate reduces the holding force.

Notes with Neodymium Magnets

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnetic are extremely fragile, resulting in shattering.

Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets will jump and also touch together within a distance of several to around 10 cm from each other.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98