UMGZ 32x18x8 [M6] GZ / N38 - magnetic holder external thread
magnetic holder external thread
Catalog no 190324
GTIN: 5906301813835
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
18 mm
Height [±0,1 mm]
8 mm
Weight
40 g
Load capacity
34 kg / 333.43 N
17.98 ZŁ with VAT / pcs + price for transport
14.62 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us
+48 22 499 98 98
if you prefer let us know using
form
the contact section.
Strength as well as appearance of magnets can be verified on our
power calculator.
Order by 14:00 and we’ll ship today!
UMGZ 32x18x8 [M6] GZ / N38 - magnetic holder external thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong power, neodymium magnets have these key benefits:
- They have constant strength, and over around 10 years their attraction force decreases symbolically – ~1% (in testing),
- They are extremely resistant to demagnetization caused by external field interference,
- The use of a mirror-like gold surface provides a eye-catching finish,
- They possess significant magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their application range,
- Wide application in advanced technical fields – they are utilized in data storage devices, electric drives, diagnostic apparatus as well as other advanced devices,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time reinforces its overall resistance,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
- Limited ability to create internal holes in the magnet – the use of a housing is recommended,
- Possible threat linked to microscopic shards may arise, when consumed by mistake, which is important in the health of young users. Additionally, small elements from these devices might complicate medical imaging if inside the body,
- In cases of mass production, neodymium magnet cost is a challenge,
Exercise Caution with Neodymium Magnets
Neodymium magnetic are particularly fragile, resulting in their breakage.
Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets bounce and touch each other mutually within a radius of several to almost 10 cm from each other.
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Pay attention!
So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are powerful neodymium magnets?.