UMGZ 32x18x8 [M6] GZ / N38 - magnetic holder external thread
magnetic holder external thread
Catalog no 190324
GTIN: 5906301813835
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
18 mm
Height [±0,1 mm]
8 mm
Weight
40 g
Load capacity
34 kg / 333.43 N
17.98 ZŁ with VAT / pcs + price for transport
14.62 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 22 499 98 98
or drop us a message via
our online form
the contact form page.
Parameters as well as shape of neodymium magnets can be checked on our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
UMGZ 32x18x8 [M6] GZ / N38 - magnetic holder external thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- They have constant strength, and over more than 10 years their attraction force decreases symbolically – ~1% (in testing),
- They are extremely resistant to demagnetization caused by external magnetic fields,
- By applying a bright layer of silver, the element gains a clean look,
- Magnetic induction on the surface of these magnets is notably high,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- The ability for precise shaping as well as adaptation to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Important function in cutting-edge sectors – they are used in hard drives, rotating machines, medical equipment along with other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we advise waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is difficult,
- Health risk linked to microscopic shards may arise, if ingested accidentally, which is important in the health of young users. Additionally, miniature parts from these devices may complicate medical imaging when ingested,
- In cases of mass production, neodymium magnet cost is a challenge,
Highest magnetic holding force – what contributes to it?
The given strength of the magnet corresponds to the optimal strength, measured under optimal conditions, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
Determinants of lifting force in real conditions
The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, however under shearing force the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.
Be Cautious with Neodymium Magnets
Neodymium magnets are particularly fragile, resulting in damage.
Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be around children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets are the strongest magnets ever invented. Their power can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Exercise caution!
In order to show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.
