tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our proposal. Practically all "neodymium magnets" in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in solid and airtight enclosure are excellent for use in difficult, demanding weather, including during rain and snow more...

magnetic holders

Magnetic holders can be used to improve production processes, underwater exploration, or locating meteors made of metal see more...

Enjoy delivery of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 6x3 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010093

GTIN: 5906301810926

5

Diameter Ø [±0,1 mm]

6 mm

Height [±0,1 mm]

3 mm

Weight

0.64 g

Magnetization Direction

↑ axial

Load capacity

1 kg / 9.81 N

Magnetic Induction

437.58 mT

Coating

[NiCuNi] nickel

0.38 with VAT / pcs + price for transport

0.31 ZŁ net + 23% VAT / pcs

0.24 ZŁ net was the lowest price in the last 30 days

bulk discounts:

Need more?

price from 1 pcs
0.31 ZŁ
0.38 ZŁ
price from 1872 pcs
0.28 ZŁ
0.34 ZŁ
price from 3744 pcs
0.27 ZŁ
0.33 ZŁ

Do you have a dilemma?

Pick up the phone and ask +48 22 499 98 98 alternatively drop us a message through contact form the contact page.
Weight and form of a magnet can be tested with our online calculation tool.

Orders submitted before 14:00 will be dispatched today!

MW 6x3 / N38 - cylindrical magnet

Specification/characteristics MW 6x3 / N38 - cylindrical magnet
properties
values
Cat. no.
010093
GTIN
5906301810926
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
6 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
0.64 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1 kg / 9.81 N
Magnetic Induction ~ ?
437.58 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 6x3 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed traditional ferrite magnets. Thanks to their strength, they are frequently used in devices that need powerful holding. The typical temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet designated MW 6x3 / N38 and a magnetic force 1 kg weighs only 0.64 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of gold-nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the site for the latest information and offers, and before visiting, please call.
Although, cylindrical neodymium magnets are very practical in various applications, they can also constitute certain risk. Because of their strong magnetic power, they can attract metallic objects with great force, which can lead to damaging skin and other surfaces, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then forming and heat treating. Their amazing magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as silver, to preserve them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical magnet with classification N50 and N52 is a strong and powerful magnetic product shaped like a cylinder, featuring strong holding power and universal applicability. Very good price, availability, ruggedness and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (according to literature),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a mirror-like gold surface provides a smooth finish,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • With the option for fine forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Important function in modern technologies – they find application in data storage devices, electric motors, clinical machines as well as other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to mechanical hits, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and increases its overall resistance,
  • They lose power at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
  • Safety concern due to small fragments may arise, when consumed by mistake, which is notable in the health of young users. Moreover, small elements from these devices may disrupt scanning once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum magnetic pulling forcewhat contributes to it?

The given pulling force of the magnet represents the maximum force, calculated in the best circumstances, specifically:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 75%. Additionally, even a slight gap {between} the magnet and the plate decreases the holding force.

Handle Neodymium Magnets Carefully

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnetic are fragile as well as can easily break as well as shatter.

Neodymium magnets are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98