Neodymium magnets: power you're looking for

Looking for huge power in small size? We have in stock rich assortment of various shapes and sizes. They are ideal for domestic applications, workshop and model making. Browse assortment in stock.

check magnet catalog

Grips for seabed exploration

Begin your hobby with treasure salvaging! Our specialized grips (F200, F400) provide safety guarantee and immense power. Solid, corrosion-resistant housing and reinforced ropes will perform in rivers and lakes.

find your water magnet

Magnetic mounting systems

Reliable solutions for mounting non-invasive. Threaded grips (M8, M10, M12) provide quick improvement of work on warehouses. They are indispensable mounting lighting, detectors and banners.

see technical specs

🚚 Order by 14:00 – we'll ship today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 6x3 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010093

GTIN/EAN: 5906301810926

5.00

Diameter Ø

6 mm [±0,1 mm]

Height

3 mm [±0,1 mm]

Weight

0.64 g

Magnetization Direction

↑ axial

Load capacity

1.15 kg / 11.23 N

Magnetic Induction

437.58 mT / 4376 Gs

Coating

[NiCuNi] Nickel

0.381 with VAT / pcs + price for transport

0.310 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.310 ZŁ
0.381 ZŁ
price from 1872 pcs
0.279 ZŁ
0.343 ZŁ
price from 3744 pcs
0.273 ZŁ
0.336 ZŁ
Want to talk magnets?

Call us now +48 888 99 98 98 or let us know by means of form the contact form page.
Weight as well as form of neodymium magnets can be reviewed with our online calculation tool.

Order by 14:00 and we’ll ship today!

Technical details - MW 6x3 / N38 - cylindrical magnet

Specification / characteristics - MW 6x3 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010093
GTIN/EAN 5906301810926
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 6 mm [±0,1 mm]
Height 3 mm [±0,1 mm]
Weight 0.64 g
Magnetization Direction ↑ axial
Load capacity ~ ? 1.15 kg / 11.23 N
Magnetic Induction ~ ? 437.58 mT / 4376 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 6x3 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical modeling of the magnet - report

The following data are the outcome of a engineering calculation. Results are based on models for the class Nd2Fe14B. Operational performance may differ from theoretical values. Treat these calculations as a preliminary roadmap during assembly planning.

Table 1: Static pull force (pull vs distance) - characteristics
MW 6x3 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 4371 Gs
437.1 mT
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
safe
1 mm 2999 Gs
299.9 mT
0.54 kg / 1.19 lbs
541.6 g / 5.3 N
safe
2 mm 1877 Gs
187.7 mT
0.21 kg / 0.47 lbs
212.2 g / 2.1 N
safe
3 mm 1161 Gs
116.1 mT
0.08 kg / 0.18 lbs
81.2 g / 0.8 N
safe
5 mm 489 Gs
48.9 mT
0.01 kg / 0.03 lbs
14.4 g / 0.1 N
safe
10 mm 103 Gs
10.3 mT
0.00 kg / 0.00 lbs
0.6 g / 0.0 N
safe
15 mm 36 Gs
3.6 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
safe
20 mm 17 Gs
1.7 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Slippage load (vertical surface)
MW 6x3 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.23 kg / 0.51 lbs
230.0 g / 2.3 N
1 mm Stal (~0.2) 0.11 kg / 0.24 lbs
108.0 g / 1.1 N
2 mm Stal (~0.2) 0.04 kg / 0.09 lbs
42.0 g / 0.4 N
3 mm Stal (~0.2) 0.02 kg / 0.04 lbs
16.0 g / 0.2 N
5 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Vertical assembly (shearing) - vertical pull
MW 6x3 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.11 kg / 0.25 lbs
115.0 g / 1.1 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.58 kg / 1.27 lbs
575.0 g / 5.6 N

Table 4: Material efficiency (saturation) - power losses
MW 6x3 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.11 kg / 0.25 lbs
115.0 g / 1.1 N
1 mm
25%
0.29 kg / 0.63 lbs
287.5 g / 2.8 N
2 mm
50%
0.58 kg / 1.27 lbs
575.0 g / 5.6 N
3 mm
75%
0.86 kg / 1.90 lbs
862.5 g / 8.5 N
5 mm
100%
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
10 mm
100%
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
11 mm
100%
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
12 mm
100%
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N

Table 5: Thermal resistance (stability) - resistance threshold
MW 6x3 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
OK
40 °C -2.2% 1.12 kg / 2.48 lbs
1124.7 g / 11.0 N
OK
60 °C -4.4% 1.10 kg / 2.42 lbs
1099.4 g / 10.8 N
80 °C -6.6% 1.07 kg / 2.37 lbs
1074.1 g / 10.5 N
100 °C -28.8% 0.82 kg / 1.81 lbs
818.8 g / 8.0 N

Table 6: Two magnets (attraction) - field range
MW 6x3 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Lateral Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 3.33 kg / 7.34 lbs
5 527 Gs
0.50 kg / 1.10 lbs
499 g / 4.9 N
N/A
1 mm 2.37 kg / 5.23 lbs
7 376 Gs
0.36 kg / 0.78 lbs
356 g / 3.5 N
2.13 kg / 4.70 lbs
~0 Gs
2 mm 1.57 kg / 3.46 lbs
5 999 Gs
0.24 kg / 0.52 lbs
235 g / 2.3 N
1.41 kg / 3.11 lbs
~0 Gs
3 mm 0.99 kg / 2.19 lbs
4 772 Gs
0.15 kg / 0.33 lbs
149 g / 1.5 N
0.89 kg / 1.97 lbs
~0 Gs
5 mm 0.38 kg / 0.83 lbs
2 948 Gs
0.06 kg / 0.13 lbs
57 g / 0.6 N
0.34 kg / 0.75 lbs
~0 Gs
10 mm 0.04 kg / 0.09 lbs
978 Gs
0.01 kg / 0.01 lbs
6 g / 0.1 N
0.04 kg / 0.08 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
205 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
18 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
11 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
7 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
5 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Safety (HSE) (implants) - warnings
MW 6x3 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.5 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Mechanical watch 20 Gs (2.0 mT) 2.0 cm
Mobile device 40 Gs (4.0 mT) 1.5 cm
Car key 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Impact energy (cracking risk) - collision effects
MW 6x3 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 42.77 km/h
(11.88 m/s)
0.05 J
30 mm 74.05 km/h
(20.57 m/s)
0.14 J
50 mm 95.59 km/h
(26.55 m/s)
0.23 J
100 mm 135.19 km/h
(37.55 m/s)
0.45 J

Table 9: Surface protection spec
MW 6x3 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MW 6x3 / N38

Parameter Value SI Unit / Description
Magnetic Flux 1 256 Mx 12.6 µWb
Pc Coefficient 0.59 Low (Flat)

Table 11: Submerged application
MW 6x3 / N38

Environment Effective steel pull Effect
Air (land) 1.15 kg Standard
Water (riverbed) 1.32 kg
(+0.17 kg buoyancy gain)
+14.5%
Rust risk: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Shear force

*Note: On a vertical wall, the magnet retains only ~20% of its max power.

2. Steel thickness impact

*Thin metal sheet (e.g. 0.5mm PC case) severely weakens the holding force.

3. Power loss vs temp

*For N38 material, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.59

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010093-2026
Measurement Calculator
Force (pull)

Magnetic Field

Other products

This product is an exceptionally strong cylindrical magnet, composed of advanced NdFeB material, which, with dimensions of Ø6x3 mm, guarantees the highest energy density. This specific item features a tolerance of ±0.1mm and industrial build quality, making it an ideal solution for the most demanding engineers and designers. As a magnetic rod with significant force (approx. 1.15 kg), this product is available off-the-shelf from our warehouse in Poland, ensuring rapid order fulfillment. Furthermore, its Ni-Cu-Ni coating effectively protects it against corrosion in typical operating conditions, guaranteeing an aesthetic appearance and durability for years.
This model is perfect for building generators, advanced sensors, and efficient magnetic separators, where field concentration on a small surface counts. Thanks to the high power of 11.23 N with a weight of only 0.64 g, this rod is indispensable in miniature devices and wherever every gram matters.
Due to the brittleness of the NdFeB material, we absolutely advise against force-fitting (so-called press-fit), as this risks chipping the coating of this precision component. To ensure long-term durability in automation, specialized industrial adhesives are used, which do not react with the nickel coating and fill the gap, guaranteeing durability of the connection.
Grade N38 is the most frequently chosen standard for professional neodymium magnets, offering an optimal price-to-power ratio and high resistance to demagnetization. If you need the strongest magnets in the same volume (Ø6x3), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard available off-the-shelf in our store.
This model is characterized by dimensions Ø6x3 mm, which, at a weight of 0.64 g, makes it an element with impressive magnetic energy density. The key parameter here is the lifting capacity amounting to approximately 1.15 kg (force ~11.23 N), which, with such compact dimensions, proves the high grade of the NdFeB material. The product has a [NiCuNi] coating, which secures it against oxidation, giving it an aesthetic, silvery shine.
Standardly, the magnetic axis runs through the center of the cylinder, causing the greatest attraction force to occur on the bases with a diameter of 6 mm. Such an arrangement is most desirable when connecting magnets in stacks (e.g., in filters) or when mounting in sockets at the bottom of a hole. On request, we can also produce versions magnetized through the diameter if your project requires it.

Strengths and weaknesses of rare earth magnets.

Strengths

In addition to their magnetic capacity, neodymium magnets provide the following advantages:
  • They retain magnetic properties for around ten years – the loss is just ~1% (based on simulations),
  • They feature excellent resistance to magnetism drop due to external magnetic sources,
  • By using a smooth layer of gold, the element has an professional look,
  • Neodymium magnets create maximum magnetic induction on a their surface, which ensures high operational effectiveness,
  • Thanks to resistance to high temperature, they can operate (depending on the shape) even at temperatures up to 230°C and higher...
  • Thanks to the ability of flexible molding and adaptation to specialized projects, magnetic components can be manufactured in a variety of forms and dimensions, which increases their versatility,
  • Key role in high-tech industry – they are used in mass storage devices, motor assemblies, medical equipment, also complex engineering applications.
  • Compactness – despite small sizes they provide effective action, making them ideal for precision applications

Cons

Disadvantages of neodymium magnets:
  • Susceptibility to cracking is one of their disadvantages. Upon intense impact they can break. We recommend keeping them in a special holder, which not only secures them against impacts but also increases their durability
  • Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
  • When exposed to humidity, magnets usually rust. To use them in conditions outside, it is recommended to use protective magnets, such as those in rubber or plastics, which prevent oxidation as well as corrosion.
  • Limited possibility of creating threads in the magnet and complicated forms - preferred is a housing - magnet mounting.
  • Health risk to health – tiny shards of magnets can be dangerous, if swallowed, which becomes key in the aspect of protecting the youngest. Additionally, tiny parts of these products are able to be problematic in diagnostics medical after entering the body.
  • Higher cost of purchase is a significant factor to consider compared to ceramic magnets, especially in budget applications

Lifting parameters

Detachment force of the magnet in optimal conditionswhat it depends on?

The force parameter is a result of laboratory testing executed under standard conditions:
  • on a plate made of mild steel, optimally conducting the magnetic flux
  • with a thickness of at least 10 mm
  • with an ideally smooth touching surface
  • with direct contact (no coatings)
  • under vertical force direction (90-degree angle)
  • at conditions approx. 20°C

Impact of factors on magnetic holding capacity in practice

It is worth knowing that the magnet holding will differ subject to the following factors, in order of importance:
  • Gap between magnet and steel – even a fraction of a millimeter of separation (caused e.g. by varnish or dirt) diminishes the pulling force, often by half at just 0.5 mm.
  • Force direction – remember that the magnet has greatest strength perpendicularly. Under sliding down, the holding force drops drastically, often to levels of 20-30% of the nominal value.
  • Plate thickness – insufficiently thick steel does not close the flux, causing part of the power to be lost to the other side.
  • Material composition – not every steel attracts identically. High carbon content worsen the interaction with the magnet.
  • Surface structure – the smoother and more polished the surface, the better the adhesion and stronger the hold. Unevenness acts like micro-gaps.
  • Thermal environment – temperature increase causes a temporary drop of force. Check the thermal limit for a given model.

Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, whereas under attempts to slide the magnet the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance between the magnet and the plate decreases the lifting capacity.

Warnings
Warning for heart patients

Warning for patients: Powerful magnets disrupt electronics. Keep at least 30 cm distance or ask another person to work with the magnets.

Nickel allergy

Allergy Notice: The Ni-Cu-Ni coating consists of nickel. If an allergic reaction happens, cease handling magnets and use protective gear.

Magnetic media

Avoid bringing magnets near a purse, laptop, or TV. The magnetic field can permanently damage these devices and erase data from cards.

Crushing force

Danger of trauma: The attraction force is so great that it can cause hematomas, pinching, and even bone fractures. Protective gloves are recommended.

Danger to the youngest

Neodymium magnets are not intended for children. Accidental ingestion of a few magnets can lead to them pinching intestinal walls, which constitutes a severe health hazard and requires immediate surgery.

Handling rules

Be careful. Rare earth magnets act from a long distance and snap with massive power, often faster than you can react.

Do not drill into magnets

Powder created during grinding of magnets is flammable. Avoid drilling into magnets unless you are an expert.

Beware of splinters

Neodymium magnets are sintered ceramics, which means they are prone to chipping. Impact of two magnets leads to them shattering into shards.

Demagnetization risk

Standard neodymium magnets (N-type) lose magnetization when the temperature surpasses 80°C. The loss of strength is permanent.

Threat to navigation

Note: neodymium magnets produce a field that confuses precision electronics. Maintain a safe distance from your mobile, device, and navigation systems.

Important! Learn more about risks in the article: Safety of working with magnets.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98