e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. Practically all magnesy in our store are available for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to purchase very strong magnet? Magnet holders in solid and airtight enclosure are ideally suited for use in difficult weather, including during rain and snow see...

magnetic holders

Holders with magnets can be applied to facilitate production, underwater exploration, or searching for meteorites made of ore more information...

Shipping is shipped if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 6x3 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010093

GTIN: 5906301810926

5

Diameter Ø [±0,1 mm]

6 mm

Height [±0,1 mm]

3 mm

Weight

0.64 g

Magnetization Direction

↑ axial

Load capacity

1 kg / 9.81 N

Magnetic Induction

437.58 mT

Coating

[NiCuNi] nickel

0.38 with VAT / pcs + price for transport

0.31 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.31 ZŁ
0.38 ZŁ
price from 1872 pcs
0.28 ZŁ
0.34 ZŁ
price from 3744 pcs
0.27 ZŁ
0.33 ZŁ

Want to talk magnets?

Pick up the phone and ask +48 888 99 98 98 or get in touch via inquiry form the contact section.
Parameters as well as form of a magnet can be analyzed on our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

MW 6x3 / N38 - cylindrical magnet

Specification/characteristics MW 6x3 / N38 - cylindrical magnet
properties
values
Cat. no.
010093
GTIN
5906301810926
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
6 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
0.64 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1 kg / 9.81 N
Magnetic Induction ~ ?
437.58 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 6x3 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed traditional ferrite magnets. Thanks to their strength, they are often employed in devices that require strong adhesion. The typical temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet named MW 6x3 / N38 with a magnetic lifting capacity of 1 kg has a weight of only 0.64 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of gold to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the latest information and promotions, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are practical in many applications, they can also constitute certain dangers. Because of their strong magnetic power, they can attract metallic objects with significant force, which can lead to damaging skin and other materials, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are handy, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with additional metals and then shaping and thermal processing. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as gold, to preserve them from environmental factors and prolong their durability. Temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
A cylindrical neodymium magnet of class N50 and N52 is a strong and extremely powerful magnetic product with the shape of a cylinder, featuring high force and broad usability. Very good price, availability, ruggedness and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • Because of the lustrous layer of gold, the component looks visually appealing,
  • They have very high magnetic induction on the surface of the magnet,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for precise shaping or adjustment to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Important function in new technology industries – they are utilized in HDDs, rotating machines, clinical machines as well as other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall strength,
  • They lose strength at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment, especially when used outside, we recommend using sealed magnets, such as those made of polymer,
  • Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is notable in the context of child safety. Furthermore, small elements from these products might hinder health screening once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Magnetic strength at its maximum – what contributes to it?

The given lifting capacity of the magnet means the maximum lifting force, determined in a perfect environment, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, whereas under shearing force the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.

Safety Precautions

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are fragile as well as can easily break and get damaged.

Neodymium magnets are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Pay attention!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98