e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnets for fishing F400 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in solid and airtight steel enclosure are excellent for use in challenging weather conditions, including during snow and rain see...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater discoveries, or finding space rocks from gold see more...

Enjoy delivery of your order on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

NCM 20x13.5x5 / N38 - channel magnetic holder

channel magnetic holder

Catalog no 360487

GTIN: 5906301814863

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

13.5 mm

Weight

9.2 g

Magnetization Direction

↑ axial

Load capacity

8 kg / 78.45 N

Coating

[NiCuNi] nickel

7.29 with VAT / pcs + price for transport

5.93 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5.93 ZŁ
7.29 ZŁ
price from 150 pcs
5.57 ZŁ
6.86 ZŁ
price from 300 pcs
5.22 ZŁ
6.42 ZŁ

Want to talk magnets?

Call us now +48 888 99 98 98 or contact us through request form the contact section.
Parameters and form of neodymium magnets can be tested on our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

NCM 20x13.5x5 / N38 - channel magnetic holder

Specification/characteristics NCM 20x13.5x5 / N38 - channel magnetic holder
properties
values
Cat. no.
360487
GTIN
5906301814863
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
13.5 mm [±0,1 mm]
Weight
9.2 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
8 kg / 78.45 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The holes in the mounting sheet enable easy mounting onto a base, providing a secure fixing with the help of screws, which also enhances the versatility of application, for example in holders for tools or enclosures of machines.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They have constant strength, and over more than ten years their attraction force decreases symbolically – ~1% (in testing),
  • Their ability to resist magnetic interference from external fields is notable,
  • In other words, due to the metallic gold coating, the magnet obtains an aesthetic appearance,
  • Magnetic induction on the surface of these magnets is notably high,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Important function in new technology industries – they serve a purpose in computer drives, electric motors, medical equipment as well as other advanced devices,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall resistance,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
  • Potential hazard related to magnet particles may arise, when consumed by mistake, which is important in the protection of children. It should also be noted that miniature parts from these devices can disrupt scanning after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what contributes to it?

The given strength of the magnet represents the optimal strength, determined under optimal conditions, namely:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • at room temperature

Key elements affecting lifting force

In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Neodymium magnetic are fragile and can easily break and get damaged.

Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Safety rules!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98