tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all magnesy on our website are available for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for fishing F200 GOLD

Where to purchase powerful magnet? Magnet holders in airtight and durable enclosure are excellent for use in challenging climate conditions, including during rain and snow see...

magnetic holders

Magnetic holders can be used to facilitate manufacturing, underwater exploration, or finding meteorites made of ore read...

Enjoy delivery of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

NCM 20x13.5x5 / N38 - channel magnetic holder

channel magnetic holder

Catalog no 360487

GTIN: 5906301814863

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

13.5 mm

Weight

9.2 g

Magnetization Direction

↑ axial

Load capacity

8 kg / 78.45 N

Coating

[NiCuNi] nickel

7.29 with VAT / pcs + price for transport

5.93 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5.93 ZŁ
7.29 ZŁ
price from 150 pcs
5.57 ZŁ
6.86 ZŁ
price from 300 pcs
5.22 ZŁ
6.42 ZŁ

Need help making a decision?

Contact us by phone +48 888 99 98 98 otherwise send us a note by means of request form through our site.
Weight as well as structure of magnets can be analyzed using our force calculator.

Orders placed before 14:00 will be shipped the same business day.

NCM 20x13.5x5 / N38 - channel magnetic holder

Specification/characteristics NCM 20x13.5x5 / N38 - channel magnetic holder
properties
values
Cat. no.
360487
GTIN
5906301814863
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
13.5 mm [±0,1 mm]
Weight
9.2 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
8 kg / 78.45 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The openings in the mounting sheet allow for easy mounting to a surface, providing a stable fixing using screws, which also enhances the adaptability of use, for example in holders for tools or enclosures of devices.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They show exceptional resistance to demagnetization from external field exposure,
  • By applying a reflective layer of silver, the element gains a clean look,
  • Magnetic induction on the surface of these magnets is notably high,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their usage potential,
  • Important function in new technology industries – they serve a purpose in computer drives, electric motors, clinical machines or even other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall strength,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is difficult,
  • Safety concern due to small fragments may arise, when consumed by mistake, which is significant in the health of young users. Furthermore, minuscule fragments from these assemblies can disrupt scanning if inside the body,
  • Due to expensive raw materials, their cost is relatively high,

Maximum holding power of the magnet – what contributes to it?

The given holding capacity of the magnet means the highest holding force, assessed under optimal conditions, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • at room temperature

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the load capacity is reduced by as much as fivefold. Additionally, even a minimal clearance {between} the magnet and the plate lowers the lifting capacity.

Safety Precautions

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets are extremely delicate, they easily break and can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a severe pressure or even a fracture.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Safety rules!

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98