NCM 20x13.5x5 / N38 - channel magnetic holder
channel magnetic holder
Catalog no 360487
GTIN: 5906301814863
Diameter Ø [±0,1 mm]
20 mm
Height [±0,1 mm]
13.5 mm
Weight
9.2 g
Magnetization Direction
↑ axial
Load capacity
8 kg / 78.45 N
Coating
[NiCuNi] nickel
7.29 ZŁ with VAT / pcs + price for transport
5.93 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure which magnet to buy?
Pick up the phone and ask
+48 888 99 98 98
or contact us by means of
our online form
through our site.
Lifting power and form of magnets can be calculated with our
power calculator.
Order by 14:00 and we’ll ship today!
NCM 20x13.5x5 / N38 - channel magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous strength, neodymium magnets offer the following advantages:
- They do not lose their power approximately 10 years – the decrease of lifting capacity is only ~1% (theoretically),
- They remain magnetized despite exposure to strong external fields,
- The use of a decorative nickel surface provides a smooth finish,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to build),
- Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their usage potential,
- Key role in cutting-edge sectors – they are utilized in HDDs, rotating machines, medical equipment or even other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and strengthens its overall robustness,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
- Safety concern due to small fragments may arise, when consumed by mistake, which is important in the health of young users. Furthermore, tiny components from these devices might interfere with diagnostics after being swallowed,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Precautions
It is essential to maintain neodymium magnets away from children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnetic are delicate as well as can easily break and get damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Neodymium magnets jump and touch each other mutually within a radius of several to around 10 cm from each other.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Caution!
In order to show why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.