tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our offer. Practically all "neodymium magnets" on our website are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight and durable steel enclosure are perfect for use in challenging weather conditions, including during snow and rain more...

magnetic holders

Magnetic holders can be applied to enhance production processes, exploring underwater areas, or locating space rocks made of ore read...

Order is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 30x20x20 / N38 - lamellar magnet

lamellar magnet

Catalog no 020142

GTIN: 5906301811480

5

length [±0,1 mm]

30 mm

Width [±0,1 mm]

20 mm

Height [±0,1 mm]

20 mm

Weight

90 g

Magnetization Direction

↑ axial

Load capacity

38.69 kg / 379.42 N

Magnetic Induction

512.53 mT

Coating

[NiCuNi] nickel

55.01 with VAT / pcs + price for transport

44.72 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
44.72 ZŁ
55.01 ZŁ
price from 14 pcs
42.04 ZŁ
51.71 ZŁ
price from 50 pcs
39.35 ZŁ
48.40 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 30x20x20 / N38 - lamellar magnet

Specification/characteristics MPL 30x20x20 / N38 - lamellar magnet
properties
values
Cat. no.
020142
GTIN
5906301811480
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
30 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
90 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
38.69 kg / 379.42 N
Magnetic Induction ~ ?
512.53 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 30x20x20 / N38 are magnets created from neodymium in a flat form. They are appreciated for their extremely powerful magnetic properties, which outshine standard ferrite magnets.
Thanks to their high strength, flat magnets are frequently applied in structures that need strong holding power.
Most common temperature resistance of these magnets is 80°C, but with larger dimensions, this value grows.
In addition, flat magnets commonly have special coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their durability.
The magnet with the designation MPL 30x20x20 / N38 i.e. a magnetic force 38.69 kg with a weight of a mere 90 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets present a range of advantages compared to other magnet shapes, which lead to them being an ideal choice for many applications:
Contact surface: Thanks to their flat shape, flat magnets ensure a larger contact surface with adjacent parts, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often applied in various devices, such as sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: This form's flat shape makes it easier mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility creators a lot of flexibility in placing them in structures, which can be more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet can provide better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet depends on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, may be a better choice.
Attracted by magnets are ferromagnetic materials, such as iron, nickel, cobalt and special alloys of ferromagnetic metals. Moreover, magnets may weaker affect alloys containing iron, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of these objects creates attractive interactions, which affect objects made of cobalt or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, such as two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
Magnets do not attract plastic, glass, wood and most gemstones. Additionally, magnets do not affect certain metals, such as copper items, aluminum materials, items made of gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, magnetic stripe cards or medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time - after about 10 years, their strength decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources very well,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in many variants of shapes and sizes, which amplifies their universality in usage.
  • Key role in the industry of new technologies – are used in computer drives, electric motors, medical equipment and other modern machines.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Potential hazard to health from tiny fragments of magnets are risky, if swallowed, which is crucial in the context of child safety. Additionally, miniscule components of these magnets can complicate diagnosis in case of swallowing.

Handle Neodymium Magnets with Caution

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

 It is important to maintain neodymium magnets out of reach from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets bounce and clash mutually within a distance of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are known for their fragility, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98