MPL 30x20x20 / N38 - lamellar magnet
lamellar magnet
Catalog no 020142
GTIN: 5906301811480
length [±0,1 mm]
30 mm
Width [±0,1 mm]
20 mm
Height [±0,1 mm]
20 mm
Weight
90 g
Magnetization Direction
↑ axial
Load capacity
38.69 kg / 379.42 N
Magnetic Induction
512.53 mT
Coating
[NiCuNi] nickel
55.01 ZŁ with VAT / pcs + price for transport
44.72 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate the price?
Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.
Orders placed by 14:00 are shipped the same day.
MPL 30x20x20 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Due to their strength, flat magnets are regularly applied in devices that need exceptional adhesion.
Most common temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value rises.
In addition, flat magnets usually have different coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet named MPL 30x20x20 / N38 and a magnetic force ${capacity} kg with a weight of a mere ${weight} grams, making it the ideal choice for projects needing a flat magnet.
Contact surface: Thanks to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often used in different devices, such as sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: Their flat shape simplifies mounting, particularly when it is necessary to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets allows creators greater flexibility in placing them in structures, which can be more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet may offer better stability, minimizing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the given use and requirements. In certain cases, other shapes, such as cylindrical or spherical, are a better choice.
Magnets have two poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, such as two north poles, repel each other.
Due to these properties, magnets are often used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards or medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.
Advantages and disadvantages of neodymium magnets
Neodymium magnets, also known as NdFeB magnets, are currently the strongest permanent magnets available on the market. Their exceptional magnetic properties make them suitable for various industries, technologies, and everyday life. Below are the key advantages:
- Immense attractive force: Even small neodymium magnets generate a very strong magnetic field.
- High coercivity: They are resistant to demagnetization by external magnetic fields.
- Wide operating temperature range: Standard neodymium magnets operate up to 80°C, with special versions up to 230°C.
- Variety of shapes and sizes: Available in many forms, making them easy to adapt to specific applications.
- Relatively low price compared to strength: They offer the best strength-to-price ratio among all magnets.
- Longevity: With proper use, they retain their magnetic properties for many years.
- Versatility of applications: From electric motors to speakers, separators, toys, and jewelry.
Despite numerous advantages, neodymium magnets also have certain disadvantages to consider:
- Brittleness: They are hard but brittle and prone to cracking or chipping upon impact.
- Limited operating temperature for standard versions: Above the Curie temperature, they lose their magnetic properties.
- Strong magnetic field can be dangerous: They can damage electronics, magnetic cards, and pose a risk of attracting metal objects with great force.
- Difficulties in mechanical processing: Due to their hardness and brittleness, processing them is complex.
Safety Precautions
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnetic are extremely fragile, resulting in shattering.
Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets may crack or crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very strongly.
It is important to keep neodymium magnets away from youngest children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
In order to show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.