MPL 30x20x20 / N38 - lamellar magnet
lamellar magnet
Catalog no 020142
GTIN/EAN: 5906301811480
length
30 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
90 g
Magnetization Direction
↑ axial
Load capacity
24.27 kg / 238.07 N
Magnetic Induction
512.53 mT / 5125 Gs
Coating
[NiCuNi] Nickel
43.22 ZŁ with VAT / pcs + price for transport
35.14 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
if you prefer send us a note via
form
the contact form page.
Specifications along with form of magnets can be verified with our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical of the product - MPL 30x20x20 / N38 - lamellar magnet
Specification / characteristics - MPL 30x20x20 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020142 |
| GTIN/EAN | 5906301811480 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 30 mm [±0,1 mm] |
| Width | 20 mm [±0,1 mm] |
| Height | 20 mm [±0,1 mm] |
| Weight | 90 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 24.27 kg / 238.07 N |
| Magnetic Induction ~ ? | 512.53 mT / 5125 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the magnet - data
Presented information constitute the outcome of a engineering simulation. Values are based on algorithms for the material Nd2Fe14B. Real-world conditions may differ from theoretical values. Treat these data as a supplementary guide during assembly planning.
Table 1: Static pull force (force vs gap) - characteristics
MPL 30x20x20 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5124 Gs
512.4 mT
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
crushing |
| 1 mm |
4730 Gs
473.0 mT
|
20.68 kg / 45.60 lbs
20685.0 g / 202.9 N
|
crushing |
| 2 mm |
4335 Gs
433.5 mT
|
17.37 kg / 38.30 lbs
17370.7 g / 170.4 N
|
crushing |
| 3 mm |
3950 Gs
395.0 mT
|
14.43 kg / 31.80 lbs
14425.2 g / 141.5 N
|
crushing |
| 5 mm |
3240 Gs
324.0 mT
|
9.71 kg / 21.40 lbs
9706.2 g / 95.2 N
|
warning |
| 10 mm |
1923 Gs
192.3 mT
|
3.42 kg / 7.53 lbs
3417.4 g / 33.5 N
|
warning |
| 15 mm |
1163 Gs
116.3 mT
|
1.25 kg / 2.76 lbs
1250.2 g / 12.3 N
|
low risk |
| 20 mm |
736 Gs
73.6 mT
|
0.50 kg / 1.10 lbs
500.4 g / 4.9 N
|
low risk |
| 30 mm |
338 Gs
33.8 mT
|
0.11 kg / 0.23 lbs
105.3 g / 1.0 N
|
low risk |
| 50 mm |
106 Gs
10.6 mT
|
0.01 kg / 0.02 lbs
10.3 g / 0.1 N
|
low risk |
Table 2: Vertical hold (vertical surface)
MPL 30x20x20 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.85 kg / 10.70 lbs
4854.0 g / 47.6 N
|
| 1 mm | Stal (~0.2) |
4.14 kg / 9.12 lbs
4136.0 g / 40.6 N
|
| 2 mm | Stal (~0.2) |
3.47 kg / 7.66 lbs
3474.0 g / 34.1 N
|
| 3 mm | Stal (~0.2) |
2.89 kg / 6.36 lbs
2886.0 g / 28.3 N
|
| 5 mm | Stal (~0.2) |
1.94 kg / 4.28 lbs
1942.0 g / 19.1 N
|
| 10 mm | Stal (~0.2) |
0.68 kg / 1.51 lbs
684.0 g / 6.7 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
250.0 g / 2.5 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MPL 30x20x20 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
7.28 kg / 16.05 lbs
7281.0 g / 71.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.85 kg / 10.70 lbs
4854.0 g / 47.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
2.43 kg / 5.35 lbs
2427.0 g / 23.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
12.14 kg / 26.75 lbs
12135.0 g / 119.0 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MPL 30x20x20 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.21 kg / 2.68 lbs
1213.5 g / 11.9 N
|
| 1 mm |
|
3.03 kg / 6.69 lbs
3033.8 g / 29.8 N
|
| 2 mm |
|
6.07 kg / 13.38 lbs
6067.5 g / 59.5 N
|
| 3 mm |
|
9.10 kg / 20.06 lbs
9101.3 g / 89.3 N
|
| 5 mm |
|
15.17 kg / 33.44 lbs
15168.8 g / 148.8 N
|
| 10 mm |
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
| 11 mm |
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
| 12 mm |
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
Table 5: Thermal resistance (stability) - thermal limit
MPL 30x20x20 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
OK |
| 40 °C | -2.2% |
23.74 kg / 52.33 lbs
23736.1 g / 232.9 N
|
OK |
| 60 °C | -4.4% |
23.20 kg / 51.15 lbs
23202.1 g / 227.6 N
|
OK |
| 80 °C | -6.6% |
22.67 kg / 49.97 lbs
22668.2 g / 222.4 N
|
|
| 100 °C | -28.8% |
17.28 kg / 38.10 lbs
17280.2 g / 169.5 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MPL 30x20x20 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
97.11 kg / 214.09 lbs
5 859 Gs
|
14.57 kg / 32.11 lbs
14567 g / 142.9 N
|
N/A |
| 1 mm |
89.88 kg / 198.15 lbs
9 859 Gs
|
13.48 kg / 29.72 lbs
13482 g / 132.3 N
|
80.89 kg / 178.34 lbs
~0 Gs
|
| 2 mm |
82.77 kg / 182.47 lbs
9 461 Gs
|
12.42 kg / 27.37 lbs
12415 g / 121.8 N
|
74.49 kg / 164.22 lbs
~0 Gs
|
| 3 mm |
75.96 kg / 167.47 lbs
9 063 Gs
|
11.39 kg / 25.12 lbs
11394 g / 111.8 N
|
68.37 kg / 150.72 lbs
~0 Gs
|
| 5 mm |
63.42 kg / 139.81 lbs
8 281 Gs
|
9.51 kg / 20.97 lbs
9513 g / 93.3 N
|
57.08 kg / 125.83 lbs
~0 Gs
|
| 10 mm |
38.84 kg / 85.62 lbs
6 481 Gs
|
5.83 kg / 12.84 lbs
5826 g / 57.1 N
|
34.95 kg / 77.06 lbs
~0 Gs
|
| 20 mm |
13.67 kg / 30.15 lbs
3 845 Gs
|
2.05 kg / 4.52 lbs
2051 g / 20.1 N
|
12.31 kg / 27.13 lbs
~0 Gs
|
| 50 mm |
0.88 kg / 1.94 lbs
976 Gs
|
0.13 kg / 0.29 lbs
132 g / 1.3 N
|
0.79 kg / 1.75 lbs
~0 Gs
|
| 60 mm |
0.42 kg / 0.93 lbs
675 Gs
|
0.06 kg / 0.14 lbs
63 g / 0.6 N
|
0.38 kg / 0.84 lbs
~0 Gs
|
| 70 mm |
0.22 kg / 0.48 lbs
484 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.43 lbs
~0 Gs
|
| 80 mm |
0.12 kg / 0.26 lbs
358 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 90 mm |
0.07 kg / 0.15 lbs
272 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 100 mm |
0.04 kg / 0.09 lbs
211 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - warnings
MPL 30x20x20 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 16.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 12.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 10.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 7.5 cm |
| Remote | 50 Gs (5.0 mT) | 7.0 cm |
| Payment card | 400 Gs (40.0 mT) | 3.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.5 cm |
Table 8: Dynamics (cracking risk) - collision effects
MPL 30x20x20 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
17.96 km/h
(4.99 m/s)
|
1.12 J | |
| 30 mm |
28.76 km/h
(7.99 m/s)
|
2.87 J | |
| 50 mm |
37.04 km/h
(10.29 m/s)
|
4.76 J | |
| 100 mm |
52.37 km/h
(14.55 m/s)
|
9.52 J |
Table 9: Corrosion resistance
MPL 30x20x20 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 30x20x20 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 30 878 Mx | 308.8 µWb |
| Pc Coefficient | 0.74 | High (Stable) |
Table 11: Physics of underwater searching
MPL 30x20x20 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 24.27 kg | Standard |
| Water (riverbed) |
27.79 kg
(+3.52 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Warning: On a vertical surface, the magnet retains just a fraction of its nominal pull.
2. Steel saturation
*Thin steel (e.g. computer case) significantly reduces the holding force.
3. Thermal stability
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.74
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Advantages and disadvantages of Nd2Fe14B magnets.
Advantages
- Their power is maintained, and after approximately ten years it decreases only by ~1% (according to research),
- They show high resistance to demagnetization induced by external magnetic fields,
- Thanks to the glossy finish, the layer of Ni-Cu-Ni, gold-plated, or silver-plated gives an elegant appearance,
- Magnetic induction on the surface of the magnet remains exceptional,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Thanks to freedom in designing and the ability to adapt to individual projects,
- Wide application in innovative solutions – they serve a role in mass storage devices, motor assemblies, advanced medical instruments, also modern systems.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Disadvantages
- At very strong impacts they can crack, therefore we recommend placing them in strong housings. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- When exposed to high temperature, neodymium magnets suffer a drop in strength. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material immune to moisture, in case of application outdoors
- We recommend casing - magnetic mount, due to difficulties in creating nuts inside the magnet and complicated shapes.
- Health risk related to microscopic parts of magnets can be dangerous, if swallowed, which gains importance in the context of child health protection. Furthermore, small elements of these magnets can be problematic in diagnostics medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Holding force characteristics
Magnetic strength at its maximum – what affects it?
- with the contact of a sheet made of low-carbon steel, ensuring full magnetic saturation
- whose thickness equals approx. 10 mm
- with an polished touching surface
- under conditions of gap-free contact (surface-to-surface)
- under axial force vector (90-degree angle)
- at ambient temperature room level
Key elements affecting lifting force
- Gap between surfaces – every millimeter of distance (caused e.g. by veneer or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
- Force direction – catalog parameter refers to detachment vertically. When applying parallel force, the magnet exhibits much less (often approx. 20-30% of maximum force).
- Plate thickness – insufficiently thick steel causes magnetic saturation, causing part of the power to be escaped to the other side.
- Material type – the best choice is pure iron steel. Stainless steels may have worse magnetic properties.
- Plate texture – ground elements ensure maximum contact, which increases force. Rough surfaces weaken the grip.
- Heat – NdFeB sinters have a sensitivity to temperature. At higher temperatures they are weaker, and at low temperatures gain strength (up to a certain limit).
Lifting capacity was measured by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance between the magnet’s surface and the plate lowers the load capacity.
Safety rules for work with neodymium magnets
Implant safety
Life threat: Strong magnets can deactivate pacemakers and defibrillators. Stay away if you have electronic implants.
Caution required
Use magnets with awareness. Their powerful strength can surprise even experienced users. Stay alert and respect their force.
Skin irritation risks
Nickel alert: The nickel-copper-nickel coating contains nickel. If an allergic reaction occurs, immediately stop handling magnets and wear gloves.
Do not give to children
NdFeB magnets are not suitable for play. Swallowing several magnets may result in them pinching intestinal walls, which constitutes a critical condition and necessitates immediate surgery.
Precision electronics
Be aware: rare earth magnets generate a field that interferes with sensitive sensors. Keep a separation from your phone, tablet, and GPS.
Material brittleness
Beware of splinters. Magnets can fracture upon uncontrolled impact, launching sharp fragments into the air. Eye protection is mandatory.
Pinching danger
Large magnets can break fingers in a fraction of a second. Do not place your hand between two attracting surfaces.
Fire risk
Dust generated during machining of magnets is combustible. Do not drill into magnets unless you are an expert.
Do not overheat magnets
Monitor thermal conditions. Heating the magnet to high heat will permanently weaken its properties and strength.
Electronic hazard
Do not bring magnets close to a purse, laptop, or screen. The magnetic field can irreversibly ruin these devices and erase data from cards.
