Strong neodymium magnets: discs and cylinders

Looking for massive power in small size? We offer complete range of disc, cylindrical and ring magnets. Perfect for for home use, workshop and model making. See products in stock.

see full offer

Magnet fishing: solid F200/F400 sets

Begin your hobby with treasure salvaging! Our double-handle grips (F200, F400) provide grip certainty and immense power. Solid, corrosion-resistant housing and strong lines will perform in challenging water conditions.

choose your set

Industrial magnetic grips mounting

Proven solutions for mounting without drilling. Threaded grips (M8, M10, M12) guarantee quick improvement of work on production halls. Perfect for installing lamps, detectors and ads.

see technical specs

🚀 Express processing: orders by 14:00 shipped within 24h!

Dhit sp. z o.o.
Product available Ships tomorrow

MW 6x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010092

GTIN/EAN: 5906301810919

5.00

Diameter Ø

6 mm [±0,1 mm]

Height

2 mm [±0,1 mm]

Weight

0.42 g

Magnetization Direction

↑ axial

Load capacity

0.86 kg / 8.43 N

Magnetic Induction

343.37 mT / 3434 Gs

Coating

[NiCuNi] Nickel

0.246 with VAT / pcs + price for transport

0.200 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.200 ZŁ
0.246 ZŁ
price from 1600 pcs
0.1880 ZŁ
0.231 ZŁ
price from 3200 pcs
0.1760 ZŁ
0.216 ZŁ
Want to negotiate?

Pick up the phone and ask +48 22 499 98 98 if you prefer let us know via inquiry form the contact section.
Parameters and form of magnetic components can be tested with our magnetic calculator.

Order by 14:00 and we’ll ship today!

Technical specification of the product - MW 6x2 / N38 - cylindrical magnet

Specification / characteristics - MW 6x2 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010092
GTIN/EAN 5906301810919
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 6 mm [±0,1 mm]
Height 2 mm [±0,1 mm]
Weight 0.42 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.86 kg / 8.43 N
Magnetic Induction ~ ? 343.37 mT / 3434 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 6x2 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical analysis of the product - report

The following data are the outcome of a physical simulation. Values rely on algorithms for the class Nd2Fe14B. Real-world performance might slightly deviate from the simulation results. Please consider these data as a reference point for designers.

Table 1: Static force (force vs distance) - power drop
MW 6x2 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3430 Gs
343.0 mT
0.86 kg / 1.90 LBS
860.0 g / 8.4 N
low risk
1 mm 2423 Gs
242.3 mT
0.43 kg / 0.95 LBS
429.2 g / 4.2 N
low risk
2 mm 1521 Gs
152.1 mT
0.17 kg / 0.37 LBS
169.0 g / 1.7 N
low risk
3 mm 932 Gs
93.2 mT
0.06 kg / 0.14 LBS
63.5 g / 0.6 N
low risk
5 mm 382 Gs
38.2 mT
0.01 kg / 0.02 LBS
10.7 g / 0.1 N
low risk
10 mm 76 Gs
7.6 mT
0.00 kg / 0.00 LBS
0.4 g / 0.0 N
low risk
15 mm 26 Gs
2.6 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
low risk
20 mm 12 Gs
1.2 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
low risk
30 mm 4 Gs
0.4 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
low risk
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
low risk

Table 2: Sliding hold (vertical surface)
MW 6x2 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.17 kg / 0.38 LBS
172.0 g / 1.7 N
1 mm Stal (~0.2) 0.09 kg / 0.19 LBS
86.0 g / 0.8 N
2 mm Stal (~0.2) 0.03 kg / 0.07 LBS
34.0 g / 0.3 N
3 mm Stal (~0.2) 0.01 kg / 0.03 LBS
12.0 g / 0.1 N
5 mm Stal (~0.2) 0.00 kg / 0.00 LBS
2.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N

Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MW 6x2 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.26 kg / 0.57 LBS
258.0 g / 2.5 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.17 kg / 0.38 LBS
172.0 g / 1.7 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.09 kg / 0.19 LBS
86.0 g / 0.8 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.43 kg / 0.95 LBS
430.0 g / 4.2 N

Table 4: Material efficiency (saturation) - sheet metal selection
MW 6x2 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.09 kg / 0.19 LBS
86.0 g / 0.8 N
1 mm
25%
0.22 kg / 0.47 LBS
215.0 g / 2.1 N
2 mm
50%
0.43 kg / 0.95 LBS
430.0 g / 4.2 N
3 mm
75%
0.65 kg / 1.42 LBS
645.0 g / 6.3 N
5 mm
100%
0.86 kg / 1.90 LBS
860.0 g / 8.4 N
10 mm
100%
0.86 kg / 1.90 LBS
860.0 g / 8.4 N
11 mm
100%
0.86 kg / 1.90 LBS
860.0 g / 8.4 N
12 mm
100%
0.86 kg / 1.90 LBS
860.0 g / 8.4 N

Table 5: Thermal stability (stability) - thermal limit
MW 6x2 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.86 kg / 1.90 LBS
860.0 g / 8.4 N
OK
40 °C -2.2% 0.84 kg / 1.85 LBS
841.1 g / 8.3 N
OK
60 °C -4.4% 0.82 kg / 1.81 LBS
822.2 g / 8.1 N
80 °C -6.6% 0.80 kg / 1.77 LBS
803.2 g / 7.9 N
100 °C -28.8% 0.61 kg / 1.35 LBS
612.3 g / 6.0 N

Table 6: Magnet-Magnet interaction (repulsion) - field range
MW 6x2 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 2.05 kg / 4.52 LBS
4 944 Gs
0.31 kg / 0.68 LBS
308 g / 3.0 N
N/A
1 mm 1.52 kg / 3.34 LBS
5 900 Gs
0.23 kg / 0.50 LBS
228 g / 2.2 N
1.37 kg / 3.01 LBS
~0 Gs
2 mm 1.02 kg / 2.26 LBS
4 847 Gs
0.15 kg / 0.34 LBS
154 g / 1.5 N
0.92 kg / 2.03 LBS
~0 Gs
3 mm 0.65 kg / 1.44 LBS
3 869 Gs
0.10 kg / 0.22 LBS
98 g / 1.0 N
0.59 kg / 1.29 LBS
~0 Gs
5 mm 0.25 kg / 0.54 LBS
2 379 Gs
0.04 kg / 0.08 LBS
37 g / 0.4 N
0.22 kg / 0.49 LBS
~0 Gs
10 mm 0.03 kg / 0.06 LBS
764 Gs
0.00 kg / 0.01 LBS
4 g / 0.0 N
0.02 kg / 0.05 LBS
~0 Gs
20 mm 0.00 kg / 0.00 LBS
153 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
50 mm 0.00 kg / 0.00 LBS
12 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
60 mm 0.00 kg / 0.00 LBS
7 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
70 mm 0.00 kg / 0.00 LBS
5 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
80 mm 0.00 kg / 0.00 LBS
3 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
90 mm 0.00 kg / 0.00 LBS
2 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
100 mm 0.00 kg / 0.00 LBS
2 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs

Table 7: Safety (HSE) (electronics) - warnings
MW 6x2 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.0 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Timepiece 20 Gs (2.0 mT) 2.0 cm
Phone / Smartphone 40 Gs (4.0 mT) 1.5 cm
Remote 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 0.5 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Collisions (kinetic energy) - warning
MW 6x2 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 45.65 km/h
(12.68 m/s)
0.03 J
30 mm 79.04 km/h
(21.96 m/s)
0.10 J
50 mm 102.04 km/h
(28.35 m/s)
0.17 J
100 mm 144.31 km/h
(40.09 m/s)
0.34 J

Table 9: Coating parameters (durability)
MW 6x2 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MW 6x2 / N38

Parameter Value SI Unit / Description
Magnetic Flux 1 029 Mx 10.3 µWb
Pc Coefficient 0.44 Low (Flat)

Table 11: Physics of underwater searching
MW 6x2 / N38

Environment Effective steel pull Effect
Air (land) 0.86 kg Standard
Water (riverbed) 0.98 kg
(+0.12 kg buoyancy gain)
+14.5%
Rust risk: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Shear force

*Warning: On a vertical surface, the magnet retains merely approx. 20-30% of its perpendicular strength.

2. Steel thickness impact

*Thin steel (e.g. computer case) severely weakens the holding force.

3. Power loss vs temp

*For N38 material, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.44

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Elemental analysis
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010092-2026
Magnet Unit Converter
Pulling force

Magnetic Induction

See more products

The presented product is an exceptionally strong cylinder magnet, made from modern NdFeB material, which, with dimensions of Ø6x2 mm, guarantees maximum efficiency. The MW 6x2 / N38 model features an accuracy of ±0.1mm and professional build quality, making it a perfect solution for the most demanding engineers and designers. As a magnetic rod with significant force (approx. 0.86 kg), this product is in stock from our warehouse in Poland, ensuring rapid order fulfillment. Additionally, its triple-layer Ni-Cu-Ni coating effectively protects it against corrosion in standard operating conditions, ensuring an aesthetic appearance and durability for years.
This model is ideal for building electric motors, advanced Hall effect sensors, and efficient filters, where maximum induction on a small surface counts. Thanks to the pull force of 8.43 N with a weight of only 0.42 g, this rod is indispensable in electronics and wherever every gram matters.
Since our magnets have a tolerance of ±0.1mm, the recommended way is to glue them into holes with a slightly larger diameter (e.g., 6.1 mm) using two-component epoxy glues. To ensure long-term durability in automation, anaerobic resins are used, which do not react with the nickel coating and fill the gap, guaranteeing durability of the connection.
Grade N38 is the most frequently chosen standard for professional neodymium magnets, offering an optimal price-to-power ratio and operational stability. If you need the strongest magnets in the same volume (Ø6x2), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard available off-the-shelf in our store.
This model is characterized by dimensions Ø6x2 mm, which, at a weight of 0.42 g, makes it an element with impressive magnetic energy density. The key parameter here is the holding force amounting to approximately 0.86 kg (force ~8.43 N), which, with such defined dimensions, proves the high power of the NdFeB material. The product has a [NiCuNi] coating, which protects the surface against oxidation, giving it an aesthetic, silvery shine.
This rod magnet is magnetized axially (along the height of 2 mm), which means that the N and S poles are located on the flat, circular surfaces. Thanks to this, the magnet can be easily glued into a hole and achieve a strong field on the front surface. On request, we can also produce versions magnetized diametrically if your project requires it.

Advantages and disadvantages of neodymium magnets.

Pros

Besides their stability, neodymium magnets are valued for these benefits:
  • They do not lose strength, even over nearly 10 years – the decrease in power is only ~1% (theoretically),
  • Magnets effectively protect themselves against loss of magnetization caused by external fields,
  • In other words, due to the glossy layer of gold, the element gains visual value,
  • The surface of neodymium magnets generates a powerful magnetic field – this is a key feature,
  • Through (adequate) combination of ingredients, they can achieve high thermal strength, enabling functioning at temperatures reaching 230°C and above...
  • Thanks to flexibility in designing and the capacity to customize to complex applications,
  • Huge importance in innovative solutions – they are used in HDD drives, electromotive mechanisms, medical equipment, and industrial machines.
  • Compactness – despite small sizes they generate large force, making them ideal for precision applications

Limitations

Cons of neodymium magnets and proposals for their use:
  • To avoid cracks under impact, we suggest using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
  • We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we suggest our specialized [AH] magnets, which work effectively even at 230°C.
  • Magnets exposed to a humid environment can rust. Therefore when using outdoors, we advise using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
  • Due to limitations in realizing threads and complicated shapes in magnets, we recommend using cover - magnetic mount.
  • Health risk related to microscopic parts of magnets pose a threat, if swallowed, which becomes key in the context of child safety. It is also worth noting that small components of these devices can complicate diagnosis medical in case of swallowing.
  • Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications

Pull force analysis

Breakaway strength of the magnet in ideal conditionswhat it depends on?

Breakaway force is the result of a measurement for the most favorable conditions, taking into account:
  • with the application of a yoke made of special test steel, guaranteeing full magnetic saturation
  • whose thickness equals approx. 10 mm
  • with an ideally smooth contact surface
  • with zero gap (without impurities)
  • for force applied at a right angle (pull-off, not shear)
  • in neutral thermal conditions

Determinants of lifting force in real conditions

It is worth knowing that the working load may be lower depending on the following factors, in order of importance:
  • Space between magnet and steel – every millimeter of separation (caused e.g. by varnish or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
  • Loading method – catalog parameter refers to pulling vertically. When applying parallel force, the magnet holds much less (often approx. 20-30% of nominal force).
  • Steel thickness – too thin sheet does not accept the full field, causing part of the flux to be escaped to the other side.
  • Metal type – not every steel reacts the same. High carbon content weaken the interaction with the magnet.
  • Surface finish – full contact is possible only on smooth steel. Rough texture create air cushions, weakening the magnet.
  • Temperature influence – high temperature weakens magnetic field. Exceeding the limit temperature can permanently demagnetize the magnet.

Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the holding force is lower. Additionally, even a slight gap between the magnet and the plate reduces the lifting capacity.

Precautions when working with NdFeB magnets
Magnetic interference

Navigation devices and smartphones are highly sensitive to magnetism. Direct contact with a powerful NdFeB magnet can decalibrate the internal compass in your phone.

Crushing force

Protect your hands. Two large magnets will join immediately with a force of massive weight, crushing everything in their path. Exercise extreme caution!

Powerful field

Handle magnets with awareness. Their powerful strength can shock even professionals. Be vigilant and do not underestimate their force.

Keep away from children

Only for adults. Tiny parts can be swallowed, causing serious injuries. Store away from kids and pets.

Threat to electronics

Device Safety: Neodymium magnets can damage data carriers and delicate electronics (pacemakers, hearing aids, timepieces).

Do not drill into magnets

Dust produced during cutting of magnets is flammable. Avoid drilling into magnets without proper cooling and knowledge.

Medical implants

Health Alert: Strong magnets can turn off pacemakers and defibrillators. Stay away if you have electronic implants.

Magnet fragility

Despite the nickel coating, the material is delicate and cannot withstand shocks. Do not hit, as the magnet may shatter into sharp, dangerous pieces.

Allergic reactions

A percentage of the population experience a contact allergy to nickel, which is the common plating for NdFeB magnets. Frequent touching can result in skin redness. We suggest wear protective gloves.

Permanent damage

Watch the temperature. Exposing the magnet to high heat will ruin its magnetic structure and pulling force.

Danger! Need more info? Check our post: Are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98