MW 6x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010092
GTIN/EAN: 5906301810919
Diameter Ø
6 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.42 g
Magnetization Direction
↑ axial
Load capacity
0.86 kg / 8.43 N
Magnetic Induction
343.37 mT / 3434 Gs
Coating
[NiCuNi] Nickel
0.246 ZŁ with VAT / pcs + price for transport
0.200 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
if you prefer let us know by means of
inquiry form
the contact form page.
Parameters as well as form of a magnet can be reviewed on our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical of the product - MW 6x2 / N38 - cylindrical magnet
Specification / characteristics - MW 6x2 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010092 |
| GTIN/EAN | 5906301810919 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 6 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 0.42 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.86 kg / 8.43 N |
| Magnetic Induction ~ ? | 343.37 mT / 3434 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the magnet - report
These values represent the direct effect of a engineering analysis. Values rely on algorithms for the class Nd2Fe14B. Real-world conditions may differ. Use these calculations as a supplementary guide during assembly planning.
Table 1: Static pull force (force vs gap) - characteristics
MW 6x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3430 Gs
343.0 mT
|
0.86 kg / 1.90 LBS
860.0 g / 8.4 N
|
safe |
| 1 mm |
2423 Gs
242.3 mT
|
0.43 kg / 0.95 LBS
429.2 g / 4.2 N
|
safe |
| 2 mm |
1521 Gs
152.1 mT
|
0.17 kg / 0.37 LBS
169.0 g / 1.7 N
|
safe |
| 3 mm |
932 Gs
93.2 mT
|
0.06 kg / 0.14 LBS
63.5 g / 0.6 N
|
safe |
| 5 mm |
382 Gs
38.2 mT
|
0.01 kg / 0.02 LBS
10.7 g / 0.1 N
|
safe |
| 10 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.00 LBS
0.4 g / 0.0 N
|
safe |
| 15 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 20 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
Table 2: Sliding load (wall)
MW 6x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 0.38 LBS
172.0 g / 1.7 N
|
| 1 mm | Stal (~0.2) |
0.09 kg / 0.19 LBS
86.0 g / 0.8 N
|
| 2 mm | Stal (~0.2) |
0.03 kg / 0.07 LBS
34.0 g / 0.3 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.03 LBS
12.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 6x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.26 kg / 0.57 LBS
258.0 g / 2.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 0.38 LBS
172.0 g / 1.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.09 kg / 0.19 LBS
86.0 g / 0.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.43 kg / 0.95 LBS
430.0 g / 4.2 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 6x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.09 kg / 0.19 LBS
86.0 g / 0.8 N
|
| 1 mm |
|
0.22 kg / 0.47 LBS
215.0 g / 2.1 N
|
| 2 mm |
|
0.43 kg / 0.95 LBS
430.0 g / 4.2 N
|
| 3 mm |
|
0.65 kg / 1.42 LBS
645.0 g / 6.3 N
|
| 5 mm |
|
0.86 kg / 1.90 LBS
860.0 g / 8.4 N
|
| 10 mm |
|
0.86 kg / 1.90 LBS
860.0 g / 8.4 N
|
| 11 mm |
|
0.86 kg / 1.90 LBS
860.0 g / 8.4 N
|
| 12 mm |
|
0.86 kg / 1.90 LBS
860.0 g / 8.4 N
|
Table 5: Working in heat (material behavior) - thermal limit
MW 6x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.86 kg / 1.90 LBS
860.0 g / 8.4 N
|
OK |
| 40 °C | -2.2% |
0.84 kg / 1.85 LBS
841.1 g / 8.3 N
|
OK |
| 60 °C | -4.4% |
0.82 kg / 1.81 LBS
822.2 g / 8.1 N
|
|
| 80 °C | -6.6% |
0.80 kg / 1.77 LBS
803.2 g / 7.9 N
|
|
| 100 °C | -28.8% |
0.61 kg / 1.35 LBS
612.3 g / 6.0 N
|
Table 6: Two magnets (attraction) - field range
MW 6x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.05 kg / 4.52 LBS
4 944 Gs
|
0.31 kg / 0.68 LBS
308 g / 3.0 N
|
N/A |
| 1 mm |
1.52 kg / 3.34 LBS
5 900 Gs
|
0.23 kg / 0.50 LBS
228 g / 2.2 N
|
1.37 kg / 3.01 LBS
~0 Gs
|
| 2 mm |
1.02 kg / 2.26 LBS
4 847 Gs
|
0.15 kg / 0.34 LBS
154 g / 1.5 N
|
0.92 kg / 2.03 LBS
~0 Gs
|
| 3 mm |
0.65 kg / 1.44 LBS
3 869 Gs
|
0.10 kg / 0.22 LBS
98 g / 1.0 N
|
0.59 kg / 1.29 LBS
~0 Gs
|
| 5 mm |
0.25 kg / 0.54 LBS
2 379 Gs
|
0.04 kg / 0.08 LBS
37 g / 0.4 N
|
0.22 kg / 0.49 LBS
~0 Gs
|
| 10 mm |
0.03 kg / 0.06 LBS
764 Gs
|
0.00 kg / 0.01 LBS
4 g / 0.0 N
|
0.02 kg / 0.05 LBS
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 LBS
153 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 LBS
12 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 LBS
7 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 LBS
5 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 LBS
3 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
2 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
2 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Protective zones (implants) - warnings
MW 6x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - warning
MW 6x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
45.65 km/h
(12.68 m/s)
|
0.03 J | |
| 30 mm |
79.04 km/h
(21.96 m/s)
|
0.10 J | |
| 50 mm |
102.04 km/h
(28.35 m/s)
|
0.17 J | |
| 100 mm |
144.31 km/h
(40.09 m/s)
|
0.34 J |
Table 9: Coating parameters (durability)
MW 6x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 6x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 029 Mx | 10.3 µWb |
| Pc Coefficient | 0.44 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MW 6x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.86 kg | Standard |
| Water (riverbed) |
0.98 kg
(+0.12 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Note: On a vertical wall, the magnet retains only ~20% of its max power.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) drastically limits the holding force.
3. Heat tolerance
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.44
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Advantages and disadvantages of rare earth magnets.
Advantages
- Their strength is durable, and after around 10 years it decreases only by ~1% (according to research),
- Neodymium magnets are highly resistant to demagnetization caused by external interference,
- In other words, due to the reflective layer of gold, the element is aesthetically pleasing,
- Neodymium magnets deliver maximum magnetic induction on a small area, which allows for strong attraction,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can work (depending on the shape) even at a temperature of 230°C or more...
- Thanks to modularity in designing and the capacity to customize to unusual requirements,
- Huge importance in advanced technology sectors – they find application in data components, brushless drives, medical equipment, and other advanced devices.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Weaknesses
- To avoid cracks under impact, we suggest using special steel housings. Such a solution secures the magnet and simultaneously improves its durability.
- NdFeB magnets lose strength when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of strength (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- Magnets exposed to a humid environment can rust. Therefore when using outdoors, we suggest using waterproof magnets made of rubber, plastic or other material protecting against moisture
- We suggest casing - magnetic mechanism, due to difficulties in creating threads inside the magnet and complicated forms.
- Possible danger resulting from small fragments of magnets can be dangerous, when accidentally swallowed, which is particularly important in the context of child health protection. Furthermore, small components of these devices can complicate diagnosis medical after entering the body.
- Due to expensive raw materials, their price is higher than average,
Lifting parameters
Maximum lifting capacity of the magnet – what it depends on?
- using a base made of mild steel, functioning as a magnetic yoke
- possessing a thickness of minimum 10 mm to ensure full flux closure
- with an ideally smooth touching surface
- under conditions of gap-free contact (metal-to-metal)
- under perpendicular force vector (90-degree angle)
- at room temperature
Magnet lifting force in use – key factors
- Space between surfaces – even a fraction of a millimeter of separation (caused e.g. by veneer or dirt) diminishes the magnet efficiency, often by half at just 0.5 mm.
- Pull-off angle – remember that the magnet holds strongest perpendicularly. Under sliding down, the holding force drops significantly, often to levels of 20-30% of the nominal value.
- Wall thickness – the thinner the sheet, the weaker the hold. Magnetic flux passes through the material instead of converting into lifting capacity.
- Chemical composition of the base – low-carbon steel attracts best. Higher carbon content decrease magnetic properties and lifting capacity.
- Plate texture – ground elements guarantee perfect abutment, which increases force. Rough surfaces weaken the grip.
- Heat – NdFeB sinters have a negative temperature coefficient. At higher temperatures they lose power, and in frost gain strength (up to a certain limit).
Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under perpendicular forces, however under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a small distance between the magnet and the plate decreases the holding force.
Safety rules for work with neodymium magnets
Pacemakers
For implant holders: Powerful magnets disrupt medical devices. Keep at least 30 cm distance or ask another person to work with the magnets.
Respect the power
Exercise caution. Rare earth magnets attract from a distance and connect with huge force, often faster than you can move away.
No play value
NdFeB magnets are not toys. Swallowing several magnets can lead to them pinching intestinal walls, which constitutes a direct threat to life and requires immediate surgery.
Flammability
Drilling and cutting of neodymium magnets carries a risk of fire hazard. Neodymium dust oxidizes rapidly with oxygen and is difficult to extinguish.
Heat warning
Do not overheat. Neodymium magnets are sensitive to temperature. If you need resistance above 80°C, look for HT versions (H, SH, UH).
Fragile material
NdFeB magnets are sintered ceramics, meaning they are prone to chipping. Collision of two magnets will cause them cracking into shards.
Phone sensors
A strong magnetic field negatively affects the functioning of magnetometers in phones and GPS navigation. Keep magnets near a smartphone to prevent breaking the sensors.
Cards and drives
Intense magnetic fields can erase data on credit cards, hard drives, and storage devices. Maintain a gap of min. 10 cm.
Hand protection
Mind your fingers. Two large magnets will snap together instantly with a force of massive weight, destroying everything in their path. Be careful!
Sensitization to coating
Some people have a hypersensitivity to nickel, which is the common plating for neodymium magnets. Extended handling may cause a rash. We suggest use protective gloves.
