MW 6x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010092
GTIN/EAN: 5906301810919
Diameter Ø
6 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.42 g
Magnetization Direction
↑ axial
Load capacity
0.86 kg / 8.43 N
Magnetic Induction
343.37 mT / 3434 Gs
Coating
[NiCuNi] Nickel
0.246 ZŁ with VAT / pcs + price for transport
0.200 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
if you prefer send us a note using
contact form
our website.
Force and appearance of a neodymium magnet can be analyzed on our
online calculation tool.
Order by 14:00 and we’ll ship today!
Product card - MW 6x2 / N38 - cylindrical magnet
Specification / characteristics - MW 6x2 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010092 |
| GTIN/EAN | 5906301810919 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 6 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 0.42 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.86 kg / 8.43 N |
| Magnetic Induction ~ ? | 343.37 mT / 3434 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the assembly - technical parameters
These information represent the outcome of a mathematical analysis. Values are based on algorithms for the class Nd2Fe14B. Real-world parameters may deviate from the simulation results. Please consider these calculations as a reference point for designers.
Table 1: Static force (force vs gap) - characteristics
MW 6x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3430 Gs
343.0 mT
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
low risk |
| 1 mm |
2423 Gs
242.3 mT
|
0.43 kg / 0.95 pounds
429.2 g / 4.2 N
|
low risk |
| 2 mm |
1521 Gs
152.1 mT
|
0.17 kg / 0.37 pounds
169.0 g / 1.7 N
|
low risk |
| 3 mm |
932 Gs
93.2 mT
|
0.06 kg / 0.14 pounds
63.5 g / 0.6 N
|
low risk |
| 5 mm |
382 Gs
38.2 mT
|
0.01 kg / 0.02 pounds
10.7 g / 0.1 N
|
low risk |
| 10 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.00 pounds
0.4 g / 0.0 N
|
low risk |
| 15 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 20 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
Table 2: Shear load (vertical surface)
MW 6x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 0.38 pounds
172.0 g / 1.7 N
|
| 1 mm | Stal (~0.2) |
0.09 kg / 0.19 pounds
86.0 g / 0.8 N
|
| 2 mm | Stal (~0.2) |
0.03 kg / 0.07 pounds
34.0 g / 0.3 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.03 pounds
12.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MW 6x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.26 kg / 0.57 pounds
258.0 g / 2.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 0.38 pounds
172.0 g / 1.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.09 kg / 0.19 pounds
86.0 g / 0.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.43 kg / 0.95 pounds
430.0 g / 4.2 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MW 6x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.09 kg / 0.19 pounds
86.0 g / 0.8 N
|
| 1 mm |
|
0.22 kg / 0.47 pounds
215.0 g / 2.1 N
|
| 2 mm |
|
0.43 kg / 0.95 pounds
430.0 g / 4.2 N
|
| 3 mm |
|
0.65 kg / 1.42 pounds
645.0 g / 6.3 N
|
| 5 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
| 10 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
| 11 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
| 12 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
Table 5: Thermal stability (stability) - resistance threshold
MW 6x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
OK |
| 40 °C | -2.2% |
0.84 kg / 1.85 pounds
841.1 g / 8.3 N
|
OK |
| 60 °C | -4.4% |
0.82 kg / 1.81 pounds
822.2 g / 8.1 N
|
|
| 80 °C | -6.6% |
0.80 kg / 1.77 pounds
803.2 g / 7.9 N
|
|
| 100 °C | -28.8% |
0.61 kg / 1.35 pounds
612.3 g / 6.0 N
|
Table 6: Two magnets (repulsion) - field range
MW 6x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.05 kg / 4.52 pounds
4 944 Gs
|
0.31 kg / 0.68 pounds
308 g / 3.0 N
|
N/A |
| 1 mm |
1.52 kg / 3.34 pounds
5 900 Gs
|
0.23 kg / 0.50 pounds
228 g / 2.2 N
|
1.37 kg / 3.01 pounds
~0 Gs
|
| 2 mm |
1.02 kg / 2.26 pounds
4 847 Gs
|
0.15 kg / 0.34 pounds
154 g / 1.5 N
|
0.92 kg / 2.03 pounds
~0 Gs
|
| 3 mm |
0.65 kg / 1.44 pounds
3 869 Gs
|
0.10 kg / 0.22 pounds
98 g / 1.0 N
|
0.59 kg / 1.29 pounds
~0 Gs
|
| 5 mm |
0.25 kg / 0.54 pounds
2 379 Gs
|
0.04 kg / 0.08 pounds
37 g / 0.4 N
|
0.22 kg / 0.49 pounds
~0 Gs
|
| 10 mm |
0.03 kg / 0.06 pounds
764 Gs
|
0.00 kg / 0.01 pounds
4 g / 0.0 N
|
0.02 kg / 0.05 pounds
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 pounds
153 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 pounds
12 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 pounds
7 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 pounds
5 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 pounds
3 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
2 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
2 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MW 6x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (cracking risk) - collision effects
MW 6x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
45.65 km/h
(12.68 m/s)
|
0.03 J | |
| 30 mm |
79.04 km/h
(21.96 m/s)
|
0.10 J | |
| 50 mm |
102.04 km/h
(28.35 m/s)
|
0.17 J | |
| 100 mm |
144.31 km/h
(40.09 m/s)
|
0.34 J |
Table 9: Surface protection spec
MW 6x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 6x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 029 Mx | 10.3 µWb |
| Pc Coefficient | 0.44 | Low (Flat) |
Table 11: Submerged application
MW 6x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.86 kg | Standard |
| Water (riverbed) |
0.98 kg
(+0.12 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Caution: On a vertical surface, the magnet retains only approx. 20-30% of its nominal pull.
2. Steel saturation
*Thin metal sheet (e.g. computer case) severely reduces the holding force.
3. Power loss vs temp
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.44
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Pros and cons of neodymium magnets.
Benefits
- They retain full power for around ten years – the drop is just ~1% (in theory),
- Magnets perfectly resist against demagnetization caused by external fields,
- Thanks to the glossy finish, the plating of nickel, gold, or silver-plated gives an clean appearance,
- Magnets have extremely high magnetic induction on the surface,
- Thanks to resistance to high temperature, they can operate (depending on the form) even at temperatures up to 230°C and higher...
- Possibility of custom forming and adapting to defined needs,
- Universal use in high-tech industry – they are utilized in data components, motor assemblies, advanced medical instruments, as well as industrial machines.
- Thanks to concentrated force, small magnets offer high operating force, with minimal size,
Weaknesses
- They are prone to damage upon too strong impacts. To avoid cracks, it is worth protecting magnets using a steel holder. Such protection not only shields the magnet but also improves its resistance to damage
- Neodymium magnets decrease their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- They rust in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- Limited ability of making threads in the magnet and complex shapes - preferred is casing - magnetic holder.
- Health risk to health – tiny shards of magnets can be dangerous, if swallowed, which is particularly important in the context of child health protection. It is also worth noting that tiny parts of these magnets are able to disrupt the diagnostic process medical in case of swallowing.
- With large orders the cost of neodymium magnets is a challenge,
Lifting parameters
Highest magnetic holding force – what affects it?
- using a sheet made of low-carbon steel, serving as a circuit closing element
- with a thickness minimum 10 mm
- with a surface cleaned and smooth
- without the slightest insulating layer between the magnet and steel
- during pulling in a direction perpendicular to the mounting surface
- at ambient temperature approx. 20 degrees Celsius
Magnet lifting force in use – key factors
- Distance – existence of any layer (paint, tape, gap) acts as an insulator, which lowers power steeply (even by 50% at 0.5 mm).
- Force direction – remember that the magnet holds strongest perpendicularly. Under sliding down, the holding force drops significantly, often to levels of 20-30% of the maximum value.
- Substrate thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet restricts the attraction force (the magnet "punches through" it).
- Steel grade – ideal substrate is high-permeability steel. Cast iron may have worse magnetic properties.
- Surface finish – ideal contact is obtained only on smooth steel. Rough texture create air cushions, reducing force.
- Temperature influence – hot environment weakens pulling force. Too high temperature can permanently damage the magnet.
Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under shearing force the lifting capacity is smaller. Moreover, even a minimal clearance between the magnet’s surface and the plate lowers the lifting capacity.
H&S for magnets
Hand protection
Protect your hands. Two powerful magnets will snap together instantly with a force of massive weight, destroying anything in their path. Exercise extreme caution!
Beware of splinters
Despite the nickel coating, the material is brittle and not impact-resistant. Do not hit, as the magnet may crumble into hazardous fragments.
Health Danger
People with a ICD have to maintain an absolute distance from magnets. The magnetic field can disrupt the functioning of the implant.
Keep away from computers
Avoid bringing magnets near a wallet, laptop, or screen. The magnetism can irreversibly ruin these devices and erase data from cards.
Do not overheat magnets
Avoid heat. Neodymium magnets are sensitive to heat. If you need resistance above 80°C, ask us about HT versions (H, SH, UH).
Fire risk
Dust produced during machining of magnets is flammable. Do not drill into magnets unless you are an expert.
Caution required
Before starting, check safety instructions. Sudden snapping can destroy the magnet or injure your hand. Think ahead.
GPS Danger
GPS units and smartphones are highly susceptible to magnetism. Direct contact with a strong magnet can ruin the internal compass in your phone.
This is not a toy
Strictly store magnets away from children. Risk of swallowing is high, and the effects of magnets clamping inside the body are very dangerous.
Warning for allergy sufferers
Warning for allergy sufferers: The nickel-copper-nickel coating consists of nickel. If redness occurs, immediately stop working with magnets and wear gloves.
