tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are in stock for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to buy strong neodymium magnet? Magnetic holders in airtight and durable steel enclosure are excellent for use in difficult, demanding weather, including during snow and rain read...

magnets with holders

Holders with magnets can be applied to enhance production processes, underwater discoveries, or finding meteorites from gold check...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x375 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130351

GTIN: 5906301812999

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

375 mm

Weight

0.01 g

1057.80 with VAT / pcs + price for transport

860.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
860.00 ZŁ
1057.80 ZŁ
price from 5 pcs
817.00 ZŁ
1004.91 ZŁ
price from 10 pcs
774.00 ZŁ
952.02 ZŁ

Need help making a decision?

Give us a call +48 22 499 98 98 if you prefer get in touch via request form the contact section.
Parameters and appearance of a neodymium magnet can be analyzed on our magnetic mass calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 25x375 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x375 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130351
GTIN
5906301812999
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
375 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are placed in a casing made of stainless steel mostly AISI304. In this way, it is possible to efficiently remove ferromagnetic particles from different substances. A key aspect of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in the food industry for the elimination of metallic contaminants, including iron fragments or iron dust. Our rollers are constructed from acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, otherwise cylindrical magnets, find application in food production, metal separation as well as recycling. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet embedded in a tube of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Generally it is believed that the stronger the magnet, the more efficient it is. But, the value of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines will be more compressed. By contrast, when the magnet is thick, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, usually stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel is highly recommended due to its excellent corrosion resistance.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other devices that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, it’s worth regularly cleaning them from contaminants, avoiding extreme temperatures above 80 degrees, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and lose their power. Magnetic field measurements should be carried out once every 24 months. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their exceptional magnetic power, neodymium magnets offer the following advantages:

  • They do not lose their magnetism, even after nearly 10 years – the decrease of strength is only ~1% (theoretically),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • Because of the lustrous layer of gold, the component looks high-end,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • With the right combination of materials, they reach significant thermal stability, enabling operation at or above 230°C (depending on the form),
  • The ability for accurate shaping as well as customization to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Wide application in modern technologies – they are utilized in HDDs, electric drives, diagnostic apparatus and high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall strength,
  • They lose field intensity at extreme temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Possible threat from tiny pieces may arise, in case of ingestion, which is notable in the family environments. Furthermore, miniature parts from these magnets can interfere with diagnostics after being swallowed,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Detachment force of the magnet in optimal conditionswhat affects it?

The given holding capacity of the magnet represents the highest holding force, measured in the best circumstances, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a polished side
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

Impact of factors on magnetic holding capacity in practice

In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under parallel forces the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate decreases the holding force.

Precautions

 Keep neodymium magnets away from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or in their path when they attract. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnetic are highly susceptible to damage, resulting in breaking.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Pay attention!

To show why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98