SM 32x100 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130296
GTIN: 5906301812890
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
100 mm
Weight
536 g
307.50 ZŁ with VAT / pcs + price for transport
250.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us now
+48 888 99 98 98
if you prefer drop us a message through
inquiry form
the contact form page.
Strength along with structure of a neodymium magnet can be reviewed using our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
SM 32x100 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They virtually do not lose power, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
- They show exceptional resistance to demagnetization from external field exposure,
- In other words, due to the metallic gold coating, the magnet obtains an aesthetic appearance,
- They possess strong magnetic force measurable at the magnet’s surface,
- With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- The ability for accurate shaping and adjustment to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
- Wide application in advanced technical fields – they are utilized in hard drives, electric motors, healthcare devices or even high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which allows for use in compact constructions
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall resistance,
- They lose field intensity at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a humid environment – during outdoor use, we recommend using waterproof magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Safety concern linked to microscopic shards may arise, if ingested accidentally, which is significant in the context of child safety. Moreover, tiny components from these products have the potential to disrupt scanning if inside the body,
- Due to expensive raw materials, their cost is considerably higher,
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given holding capacity of the magnet corresponds to the highest holding force, calculated in ideal conditions, that is:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- with vertical force applied
- at room temperature
Lifting capacity in real conditions – factors
Practical lifting force is determined by elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.
Handle with Care: Neodymium Magnets
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.
Magnets made of neodymium are highly fragile, they easily break as well as can become damaged.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets jump and touch each other mutually within a distance of several to around 10 cm from each other.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets should not be around children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Be careful!
In order to show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.