e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. All magnesy neodymowe in our store are in stock for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase strong magnet? Magnetic holders in airtight, solid enclosure are excellent for use in variable and difficult climate conditions, including during snow and rain check...

magnetic holders

Holders with magnets can be used to improve production processes, exploring underwater areas, or searching for space rocks made of ore check...

Enjoy shipping of your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships tomorrow

SM 32x100 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130296

GTIN: 5906301812890

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

100 mm

Weight

536 g

307.50 with VAT / pcs + price for transport

250.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
250.00 ZŁ
307.50 ZŁ
price from 10 pcs
237.50 ZŁ
292.13 ZŁ
price from 20 pcs
225.00 ZŁ
276.75 ZŁ

Do you have a dilemma?

Contact us by phone +48 888 99 98 98 otherwise get in touch through request form the contact page.
Parameters and shape of neodymium magnets can be verified on our power calculator.

Orders submitted before 14:00 will be dispatched today!

SM 32x100 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x100 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130296
GTIN
5906301812890
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
536 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is the heart of every magnetic filter used in industry. Its task is to separate metal filings from the transported material. High magnetic induction allows catching the finest iron particles.
The rod consists of a casing tube made of acid-resistant steel (AISI 304/316). Inside, there is a stack of strong neodymium magnets in a special configuration. Such construction ensures resistance to corrosion, water, and acids.
Metal filings stick very firmly to the surface, so cleaning requires strength or a trick. We recommend taping the filings and peeling them off together. For easier maintenance, consider a system with a cleaning sleeve.
The Gauss value tells us how effectively the magnet will catch small impurities. Standard rods (~8000 Gs) are sufficient for bolts, nails, and chips. High induction is required when contaminants are microscopic.
Yes, as a manufacturer, we make rods of any length and diameter (standard is 25mm and 32mm). You can choose a mounting method compatible with your project. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetic energy, neodymium magnets have these key benefits:

  • They retain their attractive force for almost 10 years – the loss is just ~1% (in theory),
  • They protect against demagnetization induced by external electromagnetic environments remarkably well,
  • By applying a bright layer of gold, the element gains a sleek look,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
  • Important function in modern technologies – they serve a purpose in hard drives, electric drives, healthcare devices and other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment, especially when used outside, we recommend using sealed magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
  • Possible threat from tiny pieces may arise, when consumed by mistake, which is important in the context of child safety. Moreover, small elements from these magnets have the potential to interfere with diagnostics when ingested,
  • Due to the price of neodymium, their cost is above average,

Detachment force of the magnet in optimal conditionswhat it depends on?

The given pulling force of the magnet represents the maximum force, determined under optimal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Determinants of practical lifting force of a magnet

In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under shearing force the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet and the plate decreases the load capacity.

Handle Neodymium Magnets Carefully

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets may crack or crumble with careless joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are fragile as well as can easily crack as well as get damaged.

Neodymium magnets are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Be careful!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98