tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are available for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase powerful magnet? Magnet holders in solid and airtight enclosure are excellent for use in difficult, demanding climate conditions, including during snow and rain see...

magnetic holders

Magnetic holders can be applied to improve manufacturing, underwater exploration, or searching for space rocks from gold check...

Shipping is always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x100 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130296

GTIN: 5906301812890

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

100 mm

Weight

536 g

307.50 with VAT / pcs + price for transport

250.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
250.00 ZŁ
307.50 ZŁ
price from 10 pcs
237.50 ZŁ
292.13 ZŁ
price from 20 pcs
225.00 ZŁ
276.75 ZŁ

Need advice?

Call us now +48 888 99 98 98 if you prefer drop us a message through inquiry form the contact form page.
Strength along with structure of a neodymium magnet can be reviewed using our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

SM 32x100 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x100 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130296
GTIN
5906301812890
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
536 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. Due to this, it is possible to efficiently separate ferromagnetic particles from other materials. An important element of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the embedded magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food sector for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, AISI 304, intended for contact with food.
Magnetic rollers, often called cylindrical magnets, are used in food production, metal separation as well as recycling. They help in removing iron dust during the process of separating metals from other wastes.
Our magnetic rollers consist of a neodymium magnet anchored in a tube made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Generally it is believed that the greater the magnet's power, the better. However, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines will be short. By contrast, in the case of a thicker magnet, the force lines are longer and reach further.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, AISI 316 steel is highly recommended due to its excellent anti-corrosion properties.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other separators that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, you should regularly cleaning them from contaminants, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out every two years. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
  • They show exceptional resistance to demagnetization from external field exposure,
  • In other words, due to the metallic gold coating, the magnet obtains an aesthetic appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
  • The ability for accurate shaping and adjustment to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Wide application in advanced technical fields – they are utilized in hard drives, electric motors, healthcare devices or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which allows for use in compact constructions

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall resistance,
  • They lose field intensity at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment – during outdoor use, we recommend using waterproof magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
  • Safety concern linked to microscopic shards may arise, if ingested accidentally, which is significant in the context of child safety. Moreover, tiny components from these products have the potential to disrupt scanning if inside the body,
  • Due to expensive raw materials, their cost is considerably higher,

Optimal lifting capacity of a neodymium magnetwhat contributes to it?

The given holding capacity of the magnet corresponds to the highest holding force, calculated in ideal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • at room temperature

Lifting capacity in real conditions – factors

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.

Handle with Care: Neodymium Magnets

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Magnets made of neodymium are highly fragile, they easily break as well as can become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets jump and touch each other mutually within a distance of several to around 10 cm from each other.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Neodymium magnets should not be around children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Be careful!

In order to show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98