tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. All magnesy neodymowe on our website are in stock for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnet for fishing F200 GOLD

Where to buy very strong magnet? Magnet holders in solid and airtight steel enclosure are perfect for use in variable and difficult weather, including snow and rain see more...

magnets with holders

Holders with magnets can be applied to facilitate production processes, exploring underwater areas, or finding meteorites from gold more information...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x100 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130296

GTIN: 5906301812890

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

100 mm

Weight

536 g

307.50 with VAT / pcs + price for transport

250.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
250.00 ZŁ
307.50 ZŁ
price from 10 pcs
237.50 ZŁ
292.13 ZŁ
price from 20 pcs
225.00 ZŁ
276.75 ZŁ

Not sure about your choice?

Give us a call +48 22 499 98 98 or get in touch through request form through our site.
Lifting power as well as shape of magnetic components can be reviewed using our magnetic calculator.

Order by 14:00 and we’ll ship today!

SM 32x100 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x100 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130296
GTIN
5906301812890
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
536 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. Due to this, it is possible to precisely remove ferromagnetic particles from the mixture. An important element of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure's pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic elements. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are constructed from acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, find application in metal separation, food production as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets anchored in a tube of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the stronger the magnet, the more efficient it is. Nevertheless, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are short. By contrast, in the case of a thicker magnet, the force lines will be longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, frequently stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel is recommended due to its excellent anti-corrosion properties.
Magnetic bars are characterized by their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other devices that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Magnetic field measurements should be carried out once every 24 months. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They have constant strength, and over more than 10 years their performance decreases symbolically – ~1% (according to theory),
  • They remain magnetized despite exposure to magnetic noise,
  • In other words, due to the metallic gold coating, the magnet obtains an stylish appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
  • With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Important function in new technology industries – they are utilized in hard drives, electromechanical systems, healthcare devices and other advanced devices,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall strength,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is important in the protection of children. Moreover, minuscule fragments from these devices may interfere with diagnostics if inside the body,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what contributes to it?

The given pulling force of the magnet corresponds to the maximum force, assessed in the best circumstances, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • at room temperature

Magnet lifting force in use – key factors

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under perpendicular forces, however under shearing force the lifting capacity is smaller. In addition, even a slight gap {between} the magnet and the plate decreases the lifting capacity.

Handle Neodymium Magnets with Caution

Magnets made of neodymium are extremely delicate, they easily fall apart and can crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will crack or crumble with careless connecting to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

Caution!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98