tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are available for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to buy very strong magnet? Magnet holders in solid and airtight steel casing are ideally suited for use in challenging weather conditions, including during snow and rain read...

magnetic holders

Magnetic holders can be used to improve production processes, underwater exploration, or searching for meteors made of ore see...

Shipping always shipped on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 6x1 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010091

GTIN: 5906301810902

5

Diameter Ø [±0,1 mm]

6 mm

Height [±0,1 mm]

1 mm

Weight

0.21 g

Magnetization Direction

↑ axial

Load capacity

0.33 kg / 3.24 N

Magnetic Induction

195.87 mT

Coating

[NiCuNi] nickel

0.22 with VAT / pcs + price for transport

0.18 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.18 ZŁ
0.22 ZŁ
price from 600 pcs
0.17 ZŁ
0.21 ZŁ
price from 2200 pcs
0.16 ZŁ
0.19 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 6x1 / N38 - cylindrical magnet

Specification/characteristics MW 6x1 / N38 - cylindrical magnet
properties
values
Cat. no.
010091
GTIN
5906301810902
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
6 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.21 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.33 kg / 3.24 N
Magnetic Induction ~ ?
195.87 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 6x1 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed ordinary iron magnets. Because of their strength, they are frequently used in devices that need strong adhesion. The standard temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is also very popular among neodymium magnets. The magnet with the designation MW 6x1 / N38 and a magnetic strength 0.33 kg has a weight of only 0.21 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the current information as well as promotions, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are practical in various applications, they can also pose certain risk. Because of their significant magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin or other surfaces, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with additional metals and then shaping and thermal processing. Their amazing magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as silver, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time. After 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in many variants of shapes or sizes, which amplifies their universality in usage.
  • Significant importance in the industry of new technologies – find application in computer drives, electric motors, medical apparatus or very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk to health from tiny fragments of magnets can be dangerous, when accidentally ingested, which is crucial in the context of children's health. Additionally, miniscule components of these products can complicate diagnosis when they are in the body.

Safety Precautions

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets may crack or crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very strongly.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

  Neodymium magnets should not be in the vicinity youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Magnets made of neodymium are incredibly fragile, they easily break and can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Safety rules!

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98