MW 6x1 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010091
GTIN/EAN: 5906301810902
Diameter Ø
6 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.21 g
Magnetization Direction
↑ axial
Load capacity
0.35 kg / 3.41 N
Magnetic Induction
195.87 mT / 1959 Gs
Coating
[NiCuNi] Nickel
0.221 ZŁ with VAT / pcs + price for transport
0.1800 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
or let us know by means of
contact form
through our site.
Weight along with appearance of magnetic components can be verified using our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
Detailed specification - MW 6x1 / N38 - cylindrical magnet
Specification / characteristics - MW 6x1 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010091 |
| GTIN/EAN | 5906301810902 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 6 mm [±0,1 mm] |
| Height | 1 mm [±0,1 mm] |
| Weight | 0.21 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.35 kg / 3.41 N |
| Magnetic Induction ~ ? | 195.87 mT / 1959 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the product - report
These values constitute the direct effect of a engineering calculation. Values rely on models for the material Nd2Fe14B. Actual parameters may differ from theoretical values. Use these calculations as a supplementary guide when designing systems.
Table 1: Static force (pull vs distance) - interaction chart
MW 6x1 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1958 Gs
195.8 mT
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
low risk |
| 1 mm |
1479 Gs
147.9 mT
|
0.20 kg / 0.44 lbs
199.7 g / 2.0 N
|
low risk |
| 2 mm |
945 Gs
94.5 mT
|
0.08 kg / 0.18 lbs
81.6 g / 0.8 N
|
low risk |
| 3 mm |
576 Gs
57.6 mT
|
0.03 kg / 0.07 lbs
30.3 g / 0.3 N
|
low risk |
| 5 mm |
229 Gs
22.9 mT
|
0.00 kg / 0.01 lbs
4.8 g / 0.0 N
|
low risk |
| 10 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
low risk |
| 15 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 20 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Slippage force (wall)
MW 6x1 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MW 6x1 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.11 kg / 0.23 lbs
105.0 g / 1.0 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.08 lbs
35.0 g / 0.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.18 kg / 0.39 lbs
175.0 g / 1.7 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MW 6x1 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.08 lbs
35.0 g / 0.3 N
|
| 1 mm |
|
0.09 kg / 0.19 lbs
87.5 g / 0.9 N
|
| 2 mm |
|
0.18 kg / 0.39 lbs
175.0 g / 1.7 N
|
| 3 mm |
|
0.26 kg / 0.58 lbs
262.5 g / 2.6 N
|
| 5 mm |
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 10 mm |
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 11 mm |
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 12 mm |
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
Table 5: Thermal resistance (material behavior) - thermal limit
MW 6x1 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
OK |
| 40 °C | -2.2% |
0.34 kg / 0.75 lbs
342.3 g / 3.4 N
|
OK |
| 60 °C | -4.4% |
0.33 kg / 0.74 lbs
334.6 g / 3.3 N
|
|
| 80 °C | -6.6% |
0.33 kg / 0.72 lbs
326.9 g / 3.2 N
|
|
| 100 °C | -28.8% |
0.25 kg / 0.55 lbs
249.2 g / 2.4 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MW 6x1 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.67 kg / 1.47 lbs
3 430 Gs
|
0.10 kg / 0.22 lbs
100 g / 1.0 N
|
N/A |
| 1 mm |
0.54 kg / 1.18 lbs
3 507 Gs
|
0.08 kg / 0.18 lbs
80 g / 0.8 N
|
0.48 kg / 1.06 lbs
~0 Gs
|
| 2 mm |
0.38 kg / 0.84 lbs
2 957 Gs
|
0.06 kg / 0.13 lbs
57 g / 0.6 N
|
0.34 kg / 0.76 lbs
~0 Gs
|
| 3 mm |
0.25 kg / 0.55 lbs
2 393 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.50 lbs
~0 Gs
|
| 5 mm |
0.10 kg / 0.21 lbs
1 476 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 10 mm |
0.01 kg / 0.02 lbs
458 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
86 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - warnings
MW 6x1 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 1.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (cracking risk) - collision effects
MW 6x1 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
41.18 km/h
(11.44 m/s)
|
0.01 J | |
| 30 mm |
71.31 km/h
(19.81 m/s)
|
0.04 J | |
| 50 mm |
92.06 km/h
(25.57 m/s)
|
0.07 J | |
| 100 mm |
130.20 km/h
(36.17 m/s)
|
0.14 J |
Table 9: Anti-corrosion coating durability
MW 6x1 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 6x1 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 666 Mx | 6.7 µWb |
| Pc Coefficient | 0.25 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MW 6x1 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.35 kg | Standard |
| Water (riverbed) |
0.40 kg
(+0.05 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical surface, the magnet holds merely a fraction of its nominal pull.
2. Plate thickness effect
*Thin steel (e.g. computer case) significantly limits the holding force.
3. Power loss vs temp
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.25
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Pros as well as cons of rare earth magnets.
Pros
- They virtually do not lose strength, because even after ten years the performance loss is only ~1% (in laboratory conditions),
- They retain their magnetic properties even under external field action,
- The use of an elegant layer of noble metals (nickel, gold, silver) causes the element to be more visually attractive,
- Magnetic induction on the top side of the magnet remains maximum,
- Thanks to resistance to high temperature, they are capable of working (depending on the form) even at temperatures up to 230°C and higher...
- Thanks to flexibility in designing and the capacity to modify to unusual requirements,
- Significant place in electronics industry – they are commonly used in HDD drives, motor assemblies, medical devices, as well as other advanced devices.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Limitations
- Susceptibility to cracking is one of their disadvantages. Upon strong impact they can fracture. We recommend keeping them in a steel housing, which not only protects them against impacts but also increases their durability
- When exposed to high temperature, neodymium magnets experience a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets usually rust. For applications outside, it is recommended to use protective magnets, such as those in rubber or plastics, which secure oxidation as well as corrosion.
- Limited possibility of producing nuts in the magnet and complex shapes - recommended is cover - magnet mounting.
- Health risk resulting from small fragments of magnets pose a threat, when accidentally swallowed, which is particularly important in the context of child health protection. Additionally, tiny parts of these devices are able to disrupt the diagnostic process medical when they are in the body.
- With budget limitations the cost of neodymium magnets is a challenge,
Holding force characteristics
Maximum holding power of the magnet – what contributes to it?
- with the application of a yoke made of low-carbon steel, guaranteeing full magnetic saturation
- with a thickness minimum 10 mm
- with a plane cleaned and smooth
- with zero gap (no impurities)
- during pulling in a direction vertical to the mounting surface
- at standard ambient temperature
Impact of factors on magnetic holding capacity in practice
- Distance – existence of foreign body (paint, tape, gap) acts as an insulator, which lowers power steeply (even by 50% at 0.5 mm).
- Load vector – maximum parameter is available only during perpendicular pulling. The shear force of the magnet along the surface is standardly several times lower (approx. 1/5 of the lifting capacity).
- Steel thickness – insufficiently thick steel does not accept the full field, causing part of the flux to be wasted to the other side.
- Steel type – low-carbon steel gives the best results. Alloy admixtures reduce magnetic properties and lifting capacity.
- Base smoothness – the smoother and more polished the plate, the larger the contact zone and higher the lifting capacity. Unevenness acts like micro-gaps.
- Temperature – heating the magnet results in weakening of force. Check the thermal limit for a given model.
Lifting capacity was determined by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, whereas under parallel forces the lifting capacity is smaller. In addition, even a small distance between the magnet’s surface and the plate lowers the holding force.
Safety rules for work with NdFeB magnets
Finger safety
Watch your fingers. Two powerful magnets will join immediately with a force of massive weight, crushing everything in their path. Exercise extreme caution!
Operating temperature
Standard neodymium magnets (N-type) lose power when the temperature goes above 80°C. This process is irreversible.
Safe distance
Intense magnetic fields can corrupt files on payment cards, hard drives, and storage devices. Maintain a gap of min. 10 cm.
Shattering risk
Protect your eyes. Magnets can explode upon violent connection, ejecting shards into the air. We recommend safety glasses.
Handling guide
Handle magnets with awareness. Their immense force can shock even professionals. Be vigilant and respect their power.
GPS and phone interference
GPS units and mobile phones are extremely susceptible to magnetic fields. Direct contact with a powerful NdFeB magnet can ruin the sensors in your phone.
Flammability
Fire warning: Neodymium dust is explosive. Do not process magnets in home conditions as this may cause fire.
Skin irritation risks
Some people experience a hypersensitivity to nickel, which is the common plating for NdFeB magnets. Frequent touching may cause dermatitis. It is best to use safety gloves.
Do not give to children
Neodymium magnets are not intended for children. Swallowing a few magnets may result in them attracting across intestines, which constitutes a direct threat to life and necessitates urgent medical intervention.
Medical interference
Health Alert: Strong magnets can deactivate pacemakers and defibrillators. Stay away if you have electronic implants.
