MW 6x1 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010091
GTIN: 5906301810902
Diameter Ø [±0,1 mm]
6 mm
Height [±0,1 mm]
1 mm
Weight
0.21 g
Magnetization Direction
↑ axial
Load capacity
0.33 kg / 3.24 N
Magnetic Induction
195.87 mT
Coating
[NiCuNi] nickel
0.221 ZŁ with VAT / pcs + price for transport
0.1800 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Pick up the phone and ask
+48 888 99 98 98
or contact us by means of
our online form
our website.
Specifications as well as shape of a neodymium magnet can be analyzed using our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
MW 6x1 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as epoxy, to protect them from external factors and prolong their durability. High temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent holding force, neodymium magnets have these key benefits:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
- Their ability to resist magnetic interference from external fields is impressive,
- The use of a mirror-like nickel surface provides a smooth finish,
- Magnetic induction on the surface of these magnets is notably high,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
- Significant impact in cutting-edge sectors – they serve a purpose in computer drives, electromechanical systems, medical equipment as well as other advanced devices,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of NdFeB magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall strength,
- They lose strength at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a damp environment – during outdoor use, we recommend using sealed magnets, such as those made of plastic,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
- Potential hazard from tiny pieces may arise, especially if swallowed, which is important in the health of young users. Additionally, small elements from these products have the potential to complicate medical imaging if inside the body,
- In cases of large-volume purchasing, neodymium magnet cost may be a barrier,
Breakaway strength of the magnet in ideal conditions – what contributes to it?
The given strength of the magnet represents the optimal strength, assessed in the best circumstances, specifically:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- in conditions of no clearance
- under perpendicular detachment force
- under standard ambient temperature
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet is determined by in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the holding force is lower. In addition, even a small distance {between} the magnet and the plate lowers the load capacity.
Precautions
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets are delicate and can easily break as well as shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can surprise you at first.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets should not be around children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Never bring neodymium magnets close to a phone and GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.
Pay attention!
So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.