e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are in stock for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F400 GOLD

Where to buy very strong magnet? Magnetic holders in airtight and durable steel enclosure are ideally suited for use in difficult weather, including snow and rain read...

magnets with holders

Holders with magnets can be applied to improve production processes, exploring underwater areas, or searching for space rocks from gold see...

We promise to ship ordered magnets on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x7 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010090

GTIN: 5906301810896

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

7 mm

Weight

1.03 g

Magnetization Direction

↑ axial

Load capacity

1.94 kg / 19.02 N

Magnetic Induction

582.40 mT

Coating

[NiCuNi] nickel

0.73 with VAT / pcs + price for transport

0.59 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.59 ZŁ
0.73 ZŁ
price from 1017 pcs
0.55 ZŁ
0.68 ZŁ
price from 4238 pcs
0.52 ZŁ
0.64 ZŁ

Need advice?

Give us a call +48 888 99 98 98 otherwise let us know using form through our site.
Lifting power as well as shape of a magnet can be calculated using our online calculation tool.

Same-day processing for orders placed before 14:00.

MW 5x7 / N38 - cylindrical magnet

Specification/characteristics MW 5x7 / N38 - cylindrical magnet
properties
values
Cat. no.
010090
GTIN
5906301810896
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
7 mm [±0,1 mm]
Weight
1.03 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.94 kg / 19.02 N
Magnetic Induction ~ ?
582.40 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 5x7 / N38 are magnets made of neodymium in a cylinder form. They are known for their very strong magnetic properties, which exceed ordinary iron magnets. Thanks to their power, they are often used in products that need strong adhesion. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet designated MW 5x7 / N38 and a magnetic force 1.94 kg has a weight of only 1.03 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of silver to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the current information and promotions, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are practical in various applications, they can also pose certain risk. Due to their strong magnetic power, they can attract metallic objects with significant force, which can lead to damaging skin as well as other surfaces, especially hands. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are handy, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with additional metals and then forming and heat treating. Their powerful magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as gold, to protect them from environmental factors and prolong their durability. Temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A neodymium magnet with classification N50 and N52 is a powerful and highly strong magnetic piece with the shape of a cylinder, that provides strong holding power and universal application. Good price, fast shipping, durability and broad range of uses.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • Their power is maintained, and after around 10 years, it drops only by ~1% (theoretically),
  • They remain magnetized despite exposure to magnetic noise,
  • Thanks to the polished finish and gold coating, they have an visually attractive appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for accurate shaping or adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Significant impact in new technology industries – they find application in computer drives, rotating machines, clinical machines or even sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which allows for use in compact constructions

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall resistance,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to humidity can rust. Therefore, for outdoor applications, we advise waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
  • Health risk due to small fragments may arise, in case of ingestion, which is crucial in the health of young users. It should also be noted that small elements from these assemblies might disrupt scanning after being swallowed,
  • Due to expensive raw materials, their cost is considerably higher,

Be Cautious with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Avoid bringing neodymium magnets close to a phone or GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

 Maintain neodymium magnets far from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the situation of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Magnets made of neodymium are especially delicate, which leads to damage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Exercise caution!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98