tel: +48 22 499 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are available for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to purchase very strong neodymium magnet? Magnetic holders in airtight, solid enclosure are perfect for use in variable and difficult climate conditions, including during snow and rain read...

magnetic holders

Holders with magnets can be applied to facilitate production, underwater discoveries, or searching for meteorites from gold check...

Shipping is shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x7 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010090

GTIN: 5906301810896

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

7 mm

Weight

1.03 g

Magnetization Direction

↑ axial

Load capacity

1.94 kg / 19.02 N

Magnetic Induction

582.40 mT

Coating

[NiCuNi] nickel

0.73 with VAT / pcs + price for transport

0.59 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.59 ZŁ
0.73 ZŁ
price from 1017 pcs
0.55 ZŁ
0.68 ZŁ
price from 4238 pcs
0.52 ZŁ
0.64 ZŁ

Hunting for a discount?

Call us now +48 888 99 98 98 if you prefer drop us a message through request form the contact section.
Force along with appearance of neodymium magnets can be estimated on our power calculator.

Order by 14:00 and we’ll ship today!

MW 5x7 / N38 - cylindrical magnet

Specification/characteristics MW 5x7 / N38 - cylindrical magnet
properties
values
Cat. no.
010090
GTIN
5906301810896
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
7 mm [±0,1 mm]
Weight
1.03 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.94 kg / 19.02 N
Magnetic Induction ~ ?
582.40 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 5x7 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed traditional iron magnets. Thanks to their strength, they are frequently employed in devices that require powerful holding. The standard temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet with the designation MW 5x7 / N38 and a magnetic force 1.94 kg has a weight of only 1.03 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the website for the current information and offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very practical in various applications, they can also pose certain dangers. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to crushing skin as well as other surfaces, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with other metals and then shaping and heat treating. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as gold, to shield them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
A neodymium magnet N52 and N50 is a powerful and highly strong magnetic product designed as a cylinder, that offers high force and versatile application. Attractive price, fast shipping, stability and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • Their strength is maintained, and after approximately ten years, it drops only by ~1% (theoretically),
  • They protect against demagnetization induced by ambient magnetic fields remarkably well,
  • By applying a bright layer of nickel, the element gains a sleek look,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for precise shaping and customization to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Key role in advanced technical fields – they serve a purpose in computer drives, electric drives, diagnostic apparatus and other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and enhances its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
  • Safety concern related to magnet particles may arise, when consumed by mistake, which is notable in the context of child safety. It should also be noted that minuscule fragments from these products may interfere with diagnostics if inside the body,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Precautions

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are incredibly fragile, they easily break as well as can crumble.

Neodymium magnetic are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Be careful!

To illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98