tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are in stock for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in solid and airtight enclosure are perfect for use in difficult weather conditions, including snow and rain more...

magnetic holders

Magnetic holders can be applied to enhance production, underwater exploration, or searching for meteors made of metal more information...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 4x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010076

GTIN: 5906301810759

5

Diameter Ø [±0,1 mm]

4 mm

Height [±0,1 mm]

4 mm

Weight

0.38 g

Magnetization Direction

↑ axial

Load capacity

0.88 kg / 8.63 N

Magnetic Induction

552.79 mT

Coating

[NiCuNi] nickel

0.23 with VAT / pcs + price for transport

0.19 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.19 ZŁ
0.23 ZŁ
price from 7420 pcs
0.17 ZŁ
0.21 ZŁ
price from 14840 pcs
0.17 ZŁ
0.21 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 4x4 / N38 - cylindrical magnet

Specification/characteristics MW 4x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010076
GTIN
5906301810759
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
4 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.38 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.88 kg / 8.63 N
Magnetic Induction ~ ?
552.79 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 4x4 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which outperform ordinary ferrite magnets. Thanks to their strength, they are frequently used in products that require strong adhesion. The typical temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet named MW 4x4 / N38 with a magnetic strength 0.88 kg weighs only 0.38 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the site for the latest information and promotions, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are very useful in many applications, they can also pose certain dangers. Because of their significant magnetic power, they can pull metallic objects with significant force, which can lead to damaging skin as well as other surfaces, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with other metals and then shaping and heat treating. Their unmatched magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as epoxy, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Key role in advanced technologically fields – are used in hard drives, electric motors, medical devices and other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk associated with microscopic parts of magnets pose a threat, in case of ingestion, which becomes significant in the context of children's health. Additionally, miniscule components of these devices can complicate diagnosis when they are in the body.

Handle Neodymium Magnets with Caution

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets are not toys, youngest should not play with them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Magnets made of neodymium are fragile as well as can easily crack as well as shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will jump and touch together within a distance of several to almost 10 cm from each other.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98