e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All "magnets" in our store are in stock for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to purchase very strong magnet? Magnet holders in airtight, solid enclosure are ideally suited for use in difficult, demanding climate conditions, including during snow and rain check...

magnets with holders

Magnetic holders can be applied to improve production, underwater discoveries, or locating meteors made of metal see more...

Order always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships in 2 days

MW 4x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010076

GTIN: 5906301810759

5

Diameter Ø [±0,1 mm]

4 mm

Height [±0,1 mm]

4 mm

Weight

0.38 g

Magnetization Direction

↑ axial

Load capacity

0.88 kg / 8.63 N

Magnetic Induction

552.79 mT

Coating

[NiCuNi] nickel

0.406 with VAT / pcs + price for transport

0.330 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.330 ZŁ
0.406 ZŁ
price from 7420 pcs
0.297 ZŁ
0.365 ZŁ
price from 14840 pcs
0.290 ZŁ
0.357 ZŁ

Need advice?

Give us a call +48 888 99 98 98 otherwise send us a note using request form our website.
Parameters as well as structure of a neodymium magnet can be calculated on our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 4x4 / N38 - cylindrical magnet

Specification/characteristics MW 4x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010076
GTIN
5906301810759
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
4 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.38 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.88 kg / 8.63 N
Magnetic Induction ~ ?
552.79 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

These rod-shaped products are made of sintered Neodymium-Iron-Boron (NdFeB). This ensures high magnetic density while maintaining compact dimensions. Model MW 4x4 / N38 has a pull force of approx. 0.88 kg. Their symmetrical shape makes them ideal for mounting in drilled holes, generators and filters. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
It is best to use adhesive to fix the magnet into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Use strong epoxy resins, which do not react with the nickel coating. Avoid press-fitting with force, as neodymium is a brittle material and can easily crack upon impact.
The 'N' number indicates the maximum strength of the material. A higher value means more power for the same size. The universal option is N38, which provides good performance at a reasonable price. For projects requiring extreme strength, we recommend grade N52, which is the most powerful option on the market.
These products have a standard coating of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects against air humidity. However, they are not fully waterproof. In outdoor or wet conditions, the coating may be damaged, leading to rusting of the magnet. For such tasks, we suggest enclosing them in a sealed housing or ordering a special version.
These products are the heart of many industrial devices. They are utilized in electric drives and in filters catching metal filings. Additionally, due to their precise dimensions, they are indispensable in Hall effect sensors.
These magnets retain their properties up to 80 degrees Celsius. Higher temperatures can cause irreversible demagnetization. For more demanding conditions (e.g. 120°C, 150°C, 200°C), we offer H, SH, or UH series on request. Please note that magnets are sensitive to rapid temperature changes.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetic energy, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (according to literature),
  • Their ability to resist magnetic interference from external fields is notable,
  • The use of a polished gold surface provides a smooth finish,
  • Magnetic induction on the surface of these magnets is notably high,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their application range,
  • Wide application in new technology industries – they find application in hard drives, electric motors, medical equipment as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which allows for use in small systems

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Health risk from tiny pieces may arise, when consumed by mistake, which is notable in the protection of children. Additionally, small elements from these assemblies can complicate medical imaging when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Highest magnetic holding forcewhat contributes to it?

The given holding capacity of the magnet corresponds to the highest holding force, assessed in the best circumstances, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Neodymium magnets are characterized by being fragile, which can cause them to crumble.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Warning!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98