MW 4x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010076
GTIN/EAN: 5906301810759
Diameter Ø
4 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.38 g
Magnetization Direction
↑ axial
Load capacity
0.51 kg / 4.96 N
Magnetic Induction
552.79 mT / 5528 Gs
Coating
[NiCuNi] Nickel
0.406 ZŁ with VAT / pcs + price for transport
0.330 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
alternatively contact us through
our online form
the contact section.
Strength and form of neodymium magnets can be checked on our
force calculator.
Same-day processing for orders placed before 14:00.
Product card - MW 4x4 / N38 - cylindrical magnet
Specification / characteristics - MW 4x4 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010076 |
| GTIN/EAN | 5906301810759 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 4 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 0.38 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.51 kg / 4.96 N |
| Magnetic Induction ~ ? | 552.79 mT / 5528 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the product - report
The following data constitute the outcome of a engineering analysis. Results are based on algorithms for the material Nd2Fe14B. Operational conditions may differ. Treat these calculations as a reference point for designers.
Table 1: Static pull force (pull vs gap) - power drop
MW 4x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5517 Gs
551.7 mT
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
safe |
| 1 mm |
2984 Gs
298.4 mT
|
0.15 kg / 0.33 lbs
149.2 g / 1.5 N
|
safe |
| 2 mm |
1498 Gs
149.8 mT
|
0.04 kg / 0.08 lbs
37.6 g / 0.4 N
|
safe |
| 3 mm |
803 Gs
80.3 mT
|
0.01 kg / 0.02 lbs
10.8 g / 0.1 N
|
safe |
| 5 mm |
296 Gs
29.6 mT
|
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
|
safe |
| 10 mm |
58 Gs
5.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
| 15 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 20 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 30 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Vertical capacity (wall)
MW 4x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MW 4x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.15 kg / 0.34 lbs
153.0 g / 1.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 0.11 lbs
51.0 g / 0.5 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.26 kg / 0.56 lbs
255.0 g / 2.5 N
|
Table 4: Material efficiency (substrate influence) - power losses
MW 4x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 0.11 lbs
51.0 g / 0.5 N
|
| 1 mm |
|
0.13 kg / 0.28 lbs
127.5 g / 1.3 N
|
| 2 mm |
|
0.26 kg / 0.56 lbs
255.0 g / 2.5 N
|
| 3 mm |
|
0.38 kg / 0.84 lbs
382.5 g / 3.8 N
|
| 5 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
| 10 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
| 11 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
| 12 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
Table 5: Thermal resistance (stability) - power drop
MW 4x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
OK |
| 40 °C | -2.2% |
0.50 kg / 1.10 lbs
498.8 g / 4.9 N
|
OK |
| 60 °C | -4.4% |
0.49 kg / 1.07 lbs
487.6 g / 4.8 N
|
OK |
| 80 °C | -6.6% |
0.48 kg / 1.05 lbs
476.3 g / 4.7 N
|
|
| 100 °C | -28.8% |
0.36 kg / 0.80 lbs
363.1 g / 3.6 N
|
Table 6: Two magnets (attraction) - forces in the system
MW 4x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.36 kg / 5.20 lbs
5 984 Gs
|
0.35 kg / 0.78 lbs
354 g / 3.5 N
|
N/A |
| 1 mm |
1.34 kg / 2.96 lbs
8 324 Gs
|
0.20 kg / 0.44 lbs
201 g / 2.0 N
|
1.21 kg / 2.66 lbs
~0 Gs
|
| 2 mm |
0.69 kg / 1.52 lbs
5 968 Gs
|
0.10 kg / 0.23 lbs
103 g / 1.0 N
|
0.62 kg / 1.37 lbs
~0 Gs
|
| 3 mm |
0.34 kg / 0.76 lbs
4 213 Gs
|
0.05 kg / 0.11 lbs
52 g / 0.5 N
|
0.31 kg / 0.68 lbs
~0 Gs
|
| 5 mm |
0.09 kg / 0.20 lbs
2 169 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 10 mm |
0.01 kg / 0.01 lbs
592 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
116 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MW 4x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (cracking risk) - collision effects
MW 4x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
36.95 km/h
(10.26 m/s)
|
0.02 J | |
| 30 mm |
63.99 km/h
(17.78 m/s)
|
0.06 J | |
| 50 mm |
82.62 km/h
(22.95 m/s)
|
0.10 J | |
| 100 mm |
116.84 km/h
(32.45 m/s)
|
0.20 J |
Table 9: Anti-corrosion coating durability
MW 4x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 4x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 717 Mx | 7.2 µWb |
| Pc Coefficient | 0.89 | High (Stable) |
Table 11: Physics of underwater searching
MW 4x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.51 kg | Standard |
| Water (riverbed) |
0.58 kg
(+0.07 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Warning: On a vertical surface, the magnet retains just a fraction of its perpendicular strength.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) significantly weakens the holding force.
3. Thermal stability
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.89
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also deals
Pros as well as cons of neodymium magnets.
Advantages
- They do not lose power, even after around 10 years – the decrease in power is only ~1% (theoretically),
- They possess excellent resistance to magnetism drop due to external magnetic sources,
- In other words, due to the shiny finish of silver, the element becomes visually attractive,
- Magnets exhibit huge magnetic induction on the active area,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and are able to act (depending on the shape) even at a temperature of 230°C or more...
- Possibility of detailed forming and modifying to individual applications,
- Key role in high-tech industry – they are utilized in mass storage devices, drive modules, medical equipment, also other advanced devices.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in small dimensions, which allows their use in miniature devices
Cons
- Susceptibility to cracking is one of their disadvantages. Upon intense impact they can break. We advise keeping them in a special holder, which not only secures them against impacts but also increases their durability
- Neodymium magnets decrease their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
- We suggest casing - magnetic mechanism, due to difficulties in producing nuts inside the magnet and complex shapes.
- Potential hazard to health – tiny shards of magnets are risky, when accidentally swallowed, which is particularly important in the aspect of protecting the youngest. Additionally, small elements of these devices can be problematic in diagnostics medical after entering the body.
- Due to expensive raw materials, their price exceeds standard values,
Pull force analysis
Optimal lifting capacity of a neodymium magnet – what affects it?
- with the contact of a sheet made of special test steel, ensuring maximum field concentration
- whose transverse dimension equals approx. 10 mm
- with a plane perfectly flat
- under conditions of ideal adhesion (metal-to-metal)
- for force acting at a right angle (pull-off, not shear)
- in temp. approx. 20°C
Practical aspects of lifting capacity – factors
- Distance (betwixt the magnet and the metal), since even a tiny clearance (e.g. 0.5 mm) leads to a decrease in lifting capacity by up to 50% (this also applies to varnish, corrosion or dirt).
- Force direction – catalog parameter refers to pulling vertically. When applying parallel force, the magnet holds significantly lower power (often approx. 20-30% of nominal force).
- Metal thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of generating force.
- Material type – ideal substrate is high-permeability steel. Cast iron may attract less.
- Surface finish – ideal contact is obtained only on smooth steel. Any scratches and bumps reduce the real contact area, weakening the magnet.
- Thermal factor – high temperature reduces magnetic field. Exceeding the limit temperature can permanently demagnetize the magnet.
Lifting capacity was measured using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under parallel forces the load capacity is reduced by as much as 75%. Moreover, even a small distance between the magnet and the plate lowers the lifting capacity.
Warnings
Threat to navigation
Be aware: neodymium magnets generate a field that confuses precision electronics. Maintain a safe distance from your phone, device, and navigation systems.
Nickel coating and allergies
Some people have a contact allergy to Ni, which is the typical protective layer for NdFeB magnets. Frequent touching can result in a rash. We strongly advise wear protective gloves.
Safe distance
Data protection: Strong magnets can ruin payment cards and delicate electronics (pacemakers, hearing aids, timepieces).
Fire risk
Fire hazard: Rare earth powder is highly flammable. Avoid machining magnets in home conditions as this risks ignition.
Powerful field
Before starting, read the rules. Sudden snapping can destroy the magnet or hurt your hand. Think ahead.
Adults only
Only for adults. Tiny parts can be swallowed, leading to serious injuries. Keep away from children and animals.
Power loss in heat
Keep cool. Neodymium magnets are susceptible to heat. If you need resistance above 80°C, ask us about HT versions (H, SH, UH).
Crushing risk
Big blocks can break fingers in a fraction of a second. Do not put your hand betwixt two strong magnets.
Warning for heart patients
People with a pacemaker have to maintain an absolute distance from magnets. The magnetism can disrupt the operation of the life-saving device.
Protective goggles
NdFeB magnets are ceramic materials, meaning they are prone to chipping. Impact of two magnets leads to them cracking into shards.
