tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. Practically all "neodymium magnets" in our store are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase strong magnet? Magnetic holders in solid and airtight steel casing are excellent for use in challenging weather, including during rain and snow check...

magnetic holders

Holders with magnets can be used to improve production, underwater discoveries, or locating meteorites from gold check...

Order is always shipped on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x3 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010087

GTIN: 5906301810865

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

3 mm

Weight

0.44 g

Magnetization Direction

↑ axial

Load capacity

0.83 kg / 8.14 N

Magnetic Induction

475.16 mT

Coating

[NiCuNi] nickel

0.283 with VAT / pcs + price for transport

0.230 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.230 ZŁ
0.283 ZŁ
price from 2700 pcs
0.216 ZŁ
0.266 ZŁ
price from 10900 pcs
0.202 ZŁ
0.249 ZŁ

Need advice?

Pick up the phone and ask +48 888 99 98 98 or let us know using form through our site.
Strength and appearance of a neodymium magnet can be calculated using our power calculator.

Orders submitted before 14:00 will be dispatched today!

MW 5x3 / N38 - cylindrical magnet

Specification/characteristics MW 5x3 / N38 - cylindrical magnet
properties
values
Cat. no.
010087
GTIN
5906301810865
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
0.44 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.83 kg / 8.14 N
Magnetic Induction ~ ?
475.16 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 5x3 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which exceed traditional ferrite magnets. Thanks to their strength, they are frequently used in devices that require powerful holding. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet with the designation MW 5x3 / N38 with a magnetic force 0.83 kg weighs only 0.44 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the site for the current information as well as promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are useful in various applications, they can also pose certain dangers. Because of their significant magnetic power, they can attract metallic objects with significant force, which can lead to damaging skin or other materials, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the very strong magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with other metals and then shaping and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as epoxy, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical neodymium magnet with classification N52 and N50 is a powerful and strong metallic component in the form of a cylinder, featuring high force and universal applicability. Attractive price, fast shipping, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their consistent power, neodymium magnets have these key benefits:

  • They retain their full power for almost ten years – the drop is just ~1% (according to analyses),
  • Their ability to resist magnetic interference from external fields is among the best,
  • In other words, due to the glossy gold coating, the magnet obtains an professional appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • The ability for custom shaping and adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Important function in advanced technical fields – they are utilized in computer drives, electromechanical systems, clinical machines and high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them useful in small systems

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall robustness,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is crucial in the context of child safety. It should also be noted that minuscule fragments from these magnets might complicate medical imaging once in the system,
  • In cases of tight budgets, neodymium magnet cost is a challenge,

Maximum lifting capacity of the magnetwhat contributes to it?

The given holding capacity of the magnet corresponds to the highest holding force, calculated in the best circumstances, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Practical lifting capacity: influencing factors

In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet and the plate lowers the lifting capacity.

Handle with Care: Neodymium Magnets

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a significant pressure or even a fracture.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets are incredibly delicate, they easily fall apart and can become damaged.

Neodymium magnetic are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Caution!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98