tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are available for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F300 GOLD

Where to purchase strong magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in variable and difficult weather, including during rain and snow read...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater exploration, or locating meteorites made of metal see more...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 20x8x6 / N38 - lamellar magnet

lamellar magnet

Catalog no 020134

GTIN: 5906301811404

5

length [±0,1 mm]

20 mm

Width [±0,1 mm]

8 mm

Height [±0,1 mm]

6 mm

Weight

7.2 g

Magnetization Direction

↑ axial

Load capacity

5.99 kg / 58.74 N

Magnetic Induction

423.90 mT

Coating

[NiCuNi] nickel

5.17 with VAT / pcs + price for transport

4.20 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
4.20 ZŁ
5.17 ZŁ
price from 150 pcs
3.95 ZŁ
4.86 ZŁ
price from 600 pcs
3.70 ZŁ
4.55 ZŁ

Do you have questions?

Give us a call +48 22 499 98 98 or let us know via inquiry form through our site.
Specifications as well as appearance of magnetic components can be reviewed on our magnetic mass calculator.

Same-day processing for orders placed before 14:00.

MPL 20x8x6 / N38 - lamellar magnet

Specification/characteristics MPL 20x8x6 / N38 - lamellar magnet
properties
values
Cat. no.
020134
GTIN
5906301811404
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
20 mm [±0,1 mm]
Width
8 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
7.2 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5.99 kg / 58.74 N
Magnetic Induction ~ ?
423.90 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 20x8x6 / N38 are magnets created from neodymium in a rectangular form. They are appreciated for their exceptionally potent magnetic properties, which surpass traditional ferrite magnets.
Due to their strength, flat magnets are frequently used in devices that require strong holding power.
Most common temperature resistance of flat magnets is 80 °C, but with larger dimensions, this value can increase.
In addition, flat magnets usually have special coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet with the designation MPL 20x8x6 / N38 and a magnetic strength 5.99 kg weighing a mere 7.2 grams, making it the ideal choice for projects needing a flat magnet.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which make them being a perfect solution for various uses:
Contact surface: Due to their flat shape, flat magnets ensure a larger contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often utilized in different devices, such as sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: Their flat shape makes it easier mounting, particularly when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility creators greater flexibility in arranging them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, minimizing the risk of shifting or rotating. However, it's important to note that the optimal shape of the magnet depends on the specific application and requirements. In certain cases, other shapes, like cylindrical or spherical, may be more appropriate.
Attracted by magnets are ferromagnetic materials, such as iron elements, nickel, materials with cobalt or special alloys of ferromagnetic metals. Additionally, magnets may weaker affect some other metals, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of the magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of magnets creates attractive interactions, which affect materials containing iron or other ferromagnetic substances.

Magnets have two main poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, e.g. two north poles, repel each other.
Due to these properties, magnets are commonly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
Not all materials react to magnets, and examples of such substances are plastics, glass items, wood or precious stones. Additionally, magnets do not affect most metals, such as copper, aluminum, copper, aluminum, and gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.
A flat magnet in classes N52 and N50 is a strong and powerful magnetic piece with the shape of a plate, providing strong holding power and broad usability. Competitive price, fast shipping, durability and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their consistent magnetism, neodymium magnets have these key benefits:

  • They have stable power, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • Their ability to resist magnetic interference from external fields is impressive,
  • Thanks to the glossy finish and nickel coating, they have an aesthetic appearance,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • With the right combination of magnetic alloys, they reach significant thermal stability, enabling operation at or above 230°C (depending on the form),
  • The ability for custom shaping or customization to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Key role in modern technologies – they are used in hard drives, electric motors, healthcare devices or even technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which allows for use in small systems

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment – during outdoor use, we recommend using encapsulated magnets, such as those made of plastic,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Potential hazard related to magnet particles may arise, when consumed by mistake, which is crucial in the protection of children. Additionally, tiny components from these products may interfere with diagnostics if inside the body,
  • Due to the price of neodymium, their cost is considerably higher,

Highest magnetic holding forcewhat affects it?

The given lifting capacity of the magnet represents the maximum lifting force, determined in ideal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

What influences lifting capacity in practice

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. Additionally, even a slight gap {between} the magnet and the plate lowers the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

If you have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are delicate and can easily break as well as shatter.

Neodymium magnets are fragile as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Pay attention!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98