e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all "magnets" on our website are available for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for searching F200 GOLD

Where to purchase very strong magnet? Magnetic holders in solid and airtight enclosure are excellent for use in difficult weather conditions, including during rain and snow more...

magnets with holders

Magnetic holders can be applied to enhance manufacturing, exploring underwater areas, or locating meteors from gold more...

Enjoy shipping of your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

WM 34.5x24.3x17 / N38 - magnetic hanger

magnetic hanger

Catalog no 240215

GTIN: 5906301814382

5

length [±0,1 mm]

34.5 mm

Width [±0,1 mm]

24.3 mm

Height [±0,1 mm]

17 mm

Weight

9 g

Coating

[NiCuNi] nickel

4.99 with VAT / pcs + price for transport

4.06 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
4.06 ZŁ
4.99 ZŁ
price from 100 pcs
3.82 ZŁ
4.69 ZŁ
price from 200 pcs
3.57 ZŁ
4.39 ZŁ

Looking for a better price?

Give us a call +48 888 99 98 98 alternatively drop us a message via request form the contact page.
Strength along with structure of neodymium magnets can be reviewed using our force calculator.

Same-day processing for orders placed before 14:00.

WM 34.5x24.3x17 / N38 - magnetic hanger

Specification/characteristics WM 34.5x24.3x17 / N38 - magnetic hanger
properties
values
Cat. no.
240215
GTIN
5906301814382
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
34.5 mm [±0,1 mm]
Width
24.3 mm [±0,1 mm]
Height
17 mm [±0,1 mm]
Weight
9 g [±0,1 mm]
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (according to literature),
  • They are highly resistant to demagnetization caused by external field interference,
  • The use of a decorative nickel surface provides a refined finish,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Important function in modern technologies – they are utilized in hard drives, rotating machines, clinical machines along with sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in miniature devices

Disadvantages of magnetic elements:

  • They can break when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall robustness,
  • They lose strength at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment – during outdoor use, we recommend using encapsulated magnets, such as those made of polymer,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Safety concern related to magnet particles may arise, especially if swallowed, which is notable in the health of young users. Furthermore, minuscule fragments from these devices may disrupt scanning if inside the body,
  • In cases of tight budgets, neodymium magnet cost may be a barrier,

Detachment force of the magnet in optimal conditionswhat affects it?

The given holding capacity of the magnet means the highest holding force, measured in ideal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

What influences lifting capacity in practice

The lifting capacity of a magnet is influenced by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.

Safety Precautions

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Magnets made of neodymium are extremely fragile, they easily crack and can crumble.

Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets jump and touch each other mutually within a radius of several to around 10 cm from each other.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Caution!

To show why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98