WM 34.5x24.3x17 / N38 - magnetic hanger
magnetic hanger
Catalog no 240215
GTIN: 5906301814382
length [±0,1 mm]
34.5 mm
Width [±0,1 mm]
24.3 mm
Height [±0,1 mm]
17 mm
Weight
9 g
Coating
[NiCuNi] nickel
4.99 ZŁ with VAT / pcs + price for transport
4.06 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure where to buy?
Contact us by phone
+48 888 99 98 98
otherwise get in touch through
request form
the contact page.
Lifting power as well as appearance of magnets can be analyzed on our
online calculation tool.
Order by 14:00 and we’ll ship today!
WM 34.5x24.3x17 / N38 - magnetic hanger
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (according to literature),
- Their ability to resist magnetic interference from external fields is impressive,
- By applying a shiny layer of silver, the element gains a modern look,
- Magnetic induction on the surface of these magnets is notably high,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
- Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which broadens their usage potential,
- Wide application in new technology industries – they find application in computer drives, electric motors, medical equipment or even other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which allows for use in small systems
Disadvantages of magnetic elements:
- They may fracture when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall durability,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a humid environment. If exposed to rain, we recommend using sealed magnets, such as those made of polymer,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
- Possible threat from tiny pieces may arise, when consumed by mistake, which is significant in the protection of children. Moreover, minuscule fragments from these assemblies may hinder health screening when ingested,
- In cases of mass production, neodymium magnet cost may not be economically viable,
Maximum magnetic pulling force – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, determined under optimal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a smooth surface
- in conditions of no clearance
- in a perpendicular direction of force
- at room temperature
What influences lifting capacity in practice
In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, in contrast under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate reduces the holding force.
Handle with Care: Neodymium Magnets
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Do not give neodymium magnets to youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets are noted for their fragility, which can cause them to shatter.
Magnets made of neodymium are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
If the joining of neodymium magnets is not under control, then they may crumble and crack. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely strongly.
Safety rules!
So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.
