tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. Practically all magnesy in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for searching F300 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in solid and airtight steel casing are ideally suited for use in variable and difficult climate conditions, including during snow and rain see...

magnets with holders

Holders with magnets can be used to improve manufacturing, underwater exploration, or locating meteors from gold see...

Order is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

WM 34.5x24.3x17 / N38 - magnetic hanger

magnetic hanger

Catalog no 240215

GTIN: 5906301814382

5

length [±0,1 mm]

34.5 mm

Width [±0,1 mm]

24.3 mm

Height [±0,1 mm]

17 mm

Weight

9 g

Coating

[NiCuNi] nickel

4.99 with VAT / pcs + price for transport

4.06 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
4.06 ZŁ
4.99 ZŁ
price from 100 pcs
3.82 ZŁ
4.69 ZŁ
price from 200 pcs
3.57 ZŁ
4.39 ZŁ

Not sure about your choice?

Contact us by phone +48 22 499 98 98 alternatively get in touch by means of our online form through our site.
Weight along with form of a neodymium magnet can be verified on our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

WM 34.5x24.3x17 / N38 - magnetic hanger

Specification/characteristics WM 34.5x24.3x17 / N38 - magnetic hanger
properties
values
Cat. no.
240215
GTIN
5906301814382
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
34.5 mm [±0,1 mm]
Width
24.3 mm [±0,1 mm]
Height
17 mm [±0,1 mm]
Weight
9 g [±0,1 mm]
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable power, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They protect against demagnetization induced by ambient magnetic influence remarkably well,
  • The use of a polished gold surface provides a eye-catching finish,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • With the right combination of magnetic alloys, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which broadens their application range,
  • Key role in advanced technical fields – they serve a purpose in computer drives, electric drives, diagnostic apparatus or even sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in small systems

Disadvantages of magnetic elements:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and strengthens its overall strength,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
  • Health risk from tiny pieces may arise, especially if swallowed, which is significant in the health of young users. It should also be noted that small elements from these assemblies can interfere with diagnostics after being swallowed,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum magnetic pulling forcewhat it depends on?

The given pulling force of the magnet represents the maximum force, measured in a perfect environment, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • in normal thermal conditions

Key elements affecting lifting force

In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the holding force is lower. Moreover, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets will jump and also contact together within a distance of several to around 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are extremely delicate, they easily break as well as can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Caution!

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98