MPL 30x10x8 / N38 - neodymium magnet
lamellar magnet
catalog number 020139
GTIN: 5906301811459
length
30
mm [±0,1 mm]
width
10
mm [±0,1 mm]
height
8
mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
10.94 kg / 107.28 N
magnetic induction ~
427.56 mT / 4,276 Gs
max. temperature
≤ 80
°C
catalog number 020139
GTIN: 5906301811459
length
30 mm [±0,1 mm]
width
10 mm [±0,1 mm]
height
8 mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
10.94 kg / 107.28 N
magnetic induction ~
427.56 mT / 4,276 Gs
max. temperature
≤ 80 °C
8.00 ZŁ gross price (including VAT) / pcs +
6.50 ZŁ net price + 23% VAT / pcs
bulk discounts:
need more quantity?Want a better price?
Give us a call tel: +48 888 99 98 98 or write through contact form on our website. You can check the strength as well as the appearance of neodymium magnet in our magnetic calculator magnetic calculator
Orders placed by 2:00 PM will be shipped on the same business day.
Specification: lamellar magnet 30x10x8 / N38 ↑ axial
Magnetic properties of the material N38
Physical properties of sintered neodymium magnets Nd2Fe14B
Due to their power, flat magnets are frequently used in structures that need exceptional adhesion.
The standard temperature resistance of these magnets is 80°C, but depending on the dimensions, this value grows.
In addition, flat magnets often have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, for enhancing their strength.
The magnet named MPL 30x10x8 / N38 and a magnetic strength 10.94 kg with a weight of only 18.00 grams, making it the ideal choice for projects needing a flat magnet.
Contact surface: Thanks to their flat shape, flat magnets guarantee a greater contact surface with adjacent parts, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: These are often utilized in many devices, e.g. sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: Their flat shape makes mounting, especially when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets permits designers a lot of flexibility in placing them in devices, which is more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet can provide better stability, minimizing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet is dependent on the given use and requirements. In some cases, other shapes, like cylindrical or spherical, are a better choice.
Magnets have two poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Similar poles, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are often used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the material it is made of.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.
Product suggestions
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from immense strength, neodymium magnets have the following advantages:
- They do not lose power over time - after about 10 years, their power decreases by only ~1% (theoretically),
- They are extremely resistant to demagnetization by external magnetic field,
- In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
- They have very high magnetic induction on the surface of the magnet,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
- Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
- Wide application in modern technologies – are utilized in hard drives, electric drive mechanisms, medical apparatus and other modern machines.
Disadvantages of neodymium magnets:
- They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
- They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
- Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
- The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
- Health risk associated with microscopic parts of magnets pose a threat, when accidentally ingested, which is crucial in the context of child safety. Additionally, tiny parts of these devices can be problematic in medical diagnosis in case of swallowing.
Precautions
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Neodymium magnets jump and also clash mutually within a radius of several to around 10 cm from each other.
Neodymium magnetic are highly susceptible to damage, leading to shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Avoid bringing neodymium magnets close to a phone or GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be in the vicinity youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.