tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our offer. All magnesy neodymowe on our website are available for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnets for fishing F200 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight, solid steel casing are ideally suited for use in difficult, demanding weather, including in the rain and snow more information...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater exploration, or finding meteorites from gold read...

Enjoy delivery of your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 30x10x8 / N38 - lamellar magnet

lamellar magnet

Catalog no 020139

GTIN: 5906301811459

5

length [±0,1 mm]

30 mm

Width [±0,1 mm]

10 mm

Height [±0,1 mm]

8 mm

Weight

18 g

Magnetization Direction

↑ axial

Load capacity

10.94 kg / 107.28 N

Magnetic Induction

427.56 mT

Coating

[NiCuNi] nickel

8.00 with VAT / pcs + price for transport

6.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6.50 ZŁ
8.00 ZŁ
price from 93 pcs
6.11 ZŁ
7.52 ZŁ
price from 339 pcs
5.72 ZŁ
7.04 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 30x10x8 / N38 - lamellar magnet

Specification/characteristics MPL 30x10x8 / N38 - lamellar magnet
properties
values
Cat. no.
020139
GTIN
5906301811459
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
30 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
18 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
10.94 kg / 107.28 N
Magnetic Induction ~ ?
427.56 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets min. MPL 30x10x8 / N38 are magnets made from neodymium in a rectangular form. They are known for their very strong magnetic properties, which surpass standard iron magnets.
Thanks to their high strength, flat magnets are commonly used in products that need exceptional adhesion.
Most common temperature resistance of these magnets is 80 °C, but with larger dimensions, this value can increase.
Additionally, flat magnets commonly have special coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their durability.
The magnet labeled MPL 30x10x8 / N38 i.e. a magnetic strength 10.94 kg which weighs a mere 18 grams, making it the excellent choice for applications requiring a flat shape.
Neodymium flat magnets present a range of advantages versus other magnet shapes, which lead to them being a perfect solution for many applications:
Contact surface: Due to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often used in different devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is necessary for their operation.
Mounting: This form's flat shape makes it easier mounting, especially when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers a lot of flexibility in placing them in structures, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. However, it's important to note that the optimal shape of the magnet is dependent on the given use and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be more appropriate.
Attracted by magnets are ferromagnetic materials, such as iron elements, nickel, materials with cobalt or special alloys of ferromagnetic metals. Additionally, magnets may weaker affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of these objects creates attractive interactions, which affect objects made of nickel or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which attract each other when they are different. Similar poles, e.g. two north poles, repel each other.
Due to these properties, magnets are commonly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the materials used.
Not all materials react to magnets, and examples of such substances are plastics, glass, wooden materials or precious stones. Additionally, magnets do not affect certain metals, such as copper items, aluminum materials, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time. After about 10 years, their strength decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources extremely well,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in many variants of shapes and sizes, which amplifies their universality in usage.
  • Key role in the industry of new technologies – are utilized in hard drives, electric motors, medical devices or other advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk to health from tiny fragments of magnets are risky, if swallowed, which becomes significant in the context of child safety. It's also worth noting that small elements of these products have the potential to be problematic in medical diagnosis when they are in the body.

Precautions

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If joining of neodymium magnets is not under control, then they may crumble and also crack. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets are extremely fragile, they easily break and can become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Safety precautions!

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98