SM 32x325 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130378
GTIN: 5906301813262
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
325 mm
Weight
1740 g
971.70 ZŁ with VAT / pcs + price for transport
790.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Call us
+48 22 499 98 98
if you prefer send us a note by means of
request form
the contact form page.
Force and appearance of a neodymium magnet can be analyzed with our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 32x325 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their exceptional strength, neodymium magnets offer the following advantages:
- They have unchanged lifting capacity, and over around 10 years their attraction force decreases symbolically – ~1% (in testing),
- They remain magnetized despite exposure to magnetic surroundings,
- The use of a mirror-like nickel surface provides a refined finish,
- The outer field strength of the magnet shows advanced magnetic properties,
- With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the form),
- Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their application range,
- Key role in new technology industries – they find application in computer drives, electromechanical systems, diagnostic apparatus along with sophisticated instruments,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage while also reinforces its overall resistance,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to humidity can corrode. Therefore, for outdoor applications, we advise waterproof types made of rubber,
- Limited ability to create precision features in the magnet – the use of a external casing is recommended,
- Potential hazard due to small fragments may arise, when consumed by mistake, which is crucial in the context of child safety. It should also be noted that minuscule fragments from these products might complicate medical imaging if inside the body,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum magnetic pulling force – what it depends on?
The given strength of the magnet means the optimal strength, measured in the best circumstances, specifically:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- with no separation
- in a perpendicular direction of force
- under standard ambient temperature
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate reduces the load capacity.
Exercise Caution with Neodymium Magnets
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If have a finger between or on the path of attracting magnets, there may be a severe cut or a fracture.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Magnets made of neodymium are highly susceptible to damage, leading to shattering.
Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Exercise caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
