e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in airtight and durable steel casing are excellent for use in difficult weather conditions, including during rain and snow check...

magnetic holders

Holders with magnets can be applied to facilitate production, exploring underwater areas, or finding meteorites from gold read...

Enjoy shipping of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x325 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130378

GTIN: 5906301813262

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

325 mm

Weight

1740 g

971.70 with VAT / pcs + price for transport

790.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
790.00 ZŁ
971.70 ZŁ
price from 4 pcs
750.50 ZŁ
923.12 ZŁ
price from 6 pcs
711.00 ZŁ
874.53 ZŁ

Can't decide what to choose?

Call us now +48 22 499 98 98 otherwise drop us a message via request form the contact page.
Strength as well as appearance of a magnet can be verified on our magnetic mass calculator.

Same-day shipping for orders placed before 14:00.

SM 32x325 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x325 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130378
GTIN
5906301813262
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
325 mm [±0,1 mm]
Weight
1740 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are placed in a casing made of stainless steel mostly AISI304. Due to this, it is possible to efficiently remove ferromagnetic elements from the mixture. A fundamental component of its operation is the use of repulsion of magnetic poles N and S, which enables magnetic substances to be collected. The thickness of the embedded magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to separate ferromagnetic elements. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in food production for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rods are built from acid-resistant steel, AISI 304, intended for contact with food.
Magnetic rollers, often called magnetic separators, find application in food production, metal separation as well as recycling. They help in eliminating iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with neodymium magnets embedded in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Generally it is believed that the stronger the magnet, the more effective. Nevertheless, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines will be short. Otherwise, when the magnet is thick, the force lines are longer and reach further.
For creating the casings of magnetic separators - rollers, frequently stainless steel is employed, particularly types AISI 304, AISI 316, and AISI 316L.
In a saltwater environment, type AISI 316 steel is highly recommended due to its outstanding anti-corrosion properties.
Magnetic rollers stand out for their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, it’s worth cleaning after each use, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Magnetic field measurements is recommended be carried out once every 24 months. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior power, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
  • Their ability to resist magnetic interference from external fields is among the best,
  • The use of a mirror-like gold surface provides a refined finish,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • With the option for tailored forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Wide application in modern technologies – they find application in HDDs, electric drives, clinical machines along with other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them useful in miniature devices

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall resistance,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is restricted,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is important in the family environments. It should also be noted that minuscule fragments from these magnets might interfere with diagnostics if inside the body,
  • Due to a complex production process, their cost is relatively high,

Handle with Care: Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are especially delicate, resulting in damage.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If the joining of neodymium magnets is not under control, at that time they may crumble and crack. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Safety precautions!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98