e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are available for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for treasure hunters F400 GOLD

Where to buy very strong magnet? Holders with magnets in airtight and durable enclosure are perfect for use in difficult weather, including in the rain and snow read...

magnetic holders

Holders with magnets can be applied to enhance production processes, exploring underwater areas, or searching for space rocks from gold see more...

Enjoy delivery of your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x325 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130378

GTIN: 5906301813262

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

325 mm

Weight

1740 g

971.70 with VAT / pcs + price for transport

790.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
790.00 ZŁ
971.70 ZŁ
price from 3 pcs
750.50 ZŁ
923.12 ZŁ
price from 6 pcs
711.00 ZŁ
874.53 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 32x325 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x325 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130378
GTIN
5906301813262
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
325 mm [±0,1 mm]
Weight
1740 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are welded in a casing made of stainless steel mostly AISI304. In this way, it is possible to efficiently segregate ferromagnetic particles from other materials. An important element of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic particles. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food industry to clear metallic contaminants, for example iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, otherwise magnetic separators, are used in food production, metal separation as well as recycling. They help in eliminating iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the stronger the magnet, the more effective. But, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines are more compressed. By contrast, when the magnet is thick, the force lines are longer and reach further.
For constructing the casings of magnetic separators - rollers, most often stainless steel is employed, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel is highly recommended due to its outstanding anti-corrosion properties.
Magnetic rollers are characterized by their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include the need for regular cleaning, higher cost, and potential installation challenges.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth washing regularly, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Magnetic field measurements is recommended be carried out every two years. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Key role in the industry of new technologies – find application in HDD drives, electric drive mechanisms, medical apparatus or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger arising from small pieces of magnets pose a threat, if swallowed, which becomes significant in the aspect of protecting young children. It's also worth noting that small elements of these devices have the potential to complicate diagnosis when they are in the body.

Handle with Care: Neodymium Magnets

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If joining of neodymium magnets is not controlled, at that time they may crumble and also crack. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Neodymium magnetic are highly susceptible to damage, resulting in shattering.

Magnets made of neodymium are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Safety precautions!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98