tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. Practically all "magnets" in our store are in stock for immediate purchase (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid steel enclosure are excellent for use in challenging weather, including during rain and snow more information...

magnetic holders

Magnetic holders can be used to improve manufacturing, exploring underwater areas, or searching for space rocks made of ore read...

We promise to ship your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x25 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010086

GTIN: 5906301810858

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

25 mm

Weight

3.68 g

Magnetization Direction

↑ axial

Load capacity

6.91 kg / 67.76 N

Magnetic Induction

615.39 mT

Coating

[NiCuNi] nickel

2.31 with VAT / pcs + price for transport

1.880 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.880 ZŁ
2.31 ZŁ
price from 350 pcs
1.767 ZŁ
2.17 ZŁ
price from 1350 pcs
1.654 ZŁ
2.03 ZŁ

Want to talk magnets?

Contact us by phone +48 888 99 98 98 otherwise send us a note by means of form our website.
Weight and form of magnets can be checked using our force calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 5x25 / N38 - cylindrical magnet

Specification/characteristics MW 5x25 / N38 - cylindrical magnet
properties
values
Cat. no.
010086
GTIN
5906301810858
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
3.68 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
6.91 kg / 67.76 N
Magnetic Induction ~ ?
615.39 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 5x25 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed ordinary ferrite magnets. Because of their strength, they are frequently employed in products that need strong adhesion. The typical temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet named MW 5x25 / N38 and a magnetic strength 6.91 kg weighs only 3.68 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of silver to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to check the website for the current information as well as offers, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are useful in various applications, they can also pose certain dangers. Due to their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin or other surfaces, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with additional metals and then shaping and thermal processing. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as nickel, to shield them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A cylindrical magnet of class N50 and N52 is a powerful and strong magnetic piece in the form of a cylinder, featuring strong holding power and universal applicability. Competitive price, 24h delivery, resistance and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their power is durable, and after around 10 years, it drops only by ~1% (theoretically),
  • They protect against demagnetization induced by external electromagnetic environments very well,
  • Because of the brilliant layer of gold, the component looks aesthetically refined,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping or adjustment to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Important function in advanced technical fields – they serve a purpose in hard drives, electric motors, healthcare devices as well as other advanced devices,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage while also increases its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can rust. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
  • Health risk related to magnet particles may arise, especially if swallowed, which is significant in the protection of children. Additionally, tiny components from these devices can hinder health screening when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Optimal lifting capacity of a neodymium magnetwhat contributes to it?

The given lifting capacity of the magnet means the maximum lifting force, assessed in ideal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

Practical lifting force is dependent on elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet and the plate reduces the holding force.

Handle with Care: Neodymium Magnets

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnetic are fragile as well as can easily crack and shatter.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Neodymium magnets should not be around youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will crack or crumble with uncontrolled joining to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Safety precautions!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98