MW 5x25 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010086
GTIN: 5906301810858
Diameter Ø [±0,1 mm]
5 mm
Height [±0,1 mm]
25 mm
Weight
3.68 g
Magnetization Direction
↑ axial
Load capacity
6.91 kg / 67.76 N
Magnetic Induction
615.39 mT
Coating
[NiCuNi] nickel
2.31 ZŁ with VAT / pcs + price for transport
1.88 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Contact us by phone
+48 888 99 98 98
alternatively contact us using
form
the contact page.
Strength and appearance of a magnet can be checked using our
our magnetic calculator.
Order by 14:00 and we’ll ship today!
MW 5x25 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as silver, to protect them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior power, neodymium magnets have these key benefits:
- They have constant strength, and over around 10 years their performance decreases symbolically – ~1% (in testing),
- Their ability to resist magnetic interference from external fields is notable,
- The use of a mirror-like silver surface provides a smooth finish,
- The outer field strength of the magnet shows elevated magnetic properties,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- With the option for customized forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
- Significant impact in advanced technical fields – they are utilized in computer drives, rotating machines, clinical machines along with other advanced devices,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall strength,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to wet conditions can corrode. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
- Limited ability to create threads in the magnet – the use of a housing is recommended,
- Potential hazard linked to microscopic shards may arise, if ingested accidentally, which is notable in the context of child safety. Furthermore, tiny components from these devices may interfere with diagnostics when ingested,
- In cases of large-volume purchasing, neodymium magnet cost may be a barrier,
Maximum lifting force for a neodymium magnet – what affects it?
The given holding capacity of the magnet corresponds to the highest holding force, assessed in the best circumstances, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- under perpendicular detachment force
- under standard ambient temperature
Impact of factors on magnetic holding capacity in practice
The lifting capacity of a magnet depends on in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured using a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular detachment force, in contrast under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate lowers the lifting capacity.
Be Cautious with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnetic are extremely fragile, leading to their cracking.
Neodymium magnetic are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Caution!
In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.