MW 5x15 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010084
GTIN: 5906301810834
Diameter Ø [±0,1 mm]
5 mm
Height [±0,1 mm]
15 mm
Weight
2.21 g
Magnetization Direction
↑ axial
Load capacity
4.15 kg / 40.7 N
Magnetic Induction
610.03 mT
Coating
[NiCuNi] nickel
1.11 ZŁ with VAT / pcs + price for transport
0.90 ZŁ net + 23% VAT / pcs
0.80 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Do you have a hard time selecting?
Call us
+48 888 99 98 98
otherwise send us a note by means of
request form
the contact section.
Force along with structure of a neodymium magnet can be verified with our
modular calculator.
Same-day processing for orders placed before 14:00.
MW 5x15 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as epoxy, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- They have unchanged lifting capacity, and over nearly ten years their performance decreases symbolically – ~1% (according to theory),
- They show superior resistance to demagnetization from external magnetic fields,
- By applying a bright layer of nickel, the element gains a clean look,
- They have extremely strong magnetic induction on the surface of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for tailored forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Key role in cutting-edge sectors – they serve a purpose in computer drives, electromechanical systems, medical equipment along with technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them ideal in miniature devices
Disadvantages of rare earth magnets:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to physical collisions, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage while also reinforces its overall strength,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
- Health risk from tiny pieces may arise, if ingested accidentally, which is crucial in the protection of children. It should also be noted that minuscule fragments from these assemblies may interfere with diagnostics when ingested,
- In cases of large-volume purchasing, neodymium magnet cost may be a barrier,
Detachment force of the magnet in optimal conditions – what affects it?
The given holding capacity of the magnet corresponds to the highest holding force, assessed under optimal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a smooth surface
- in conditions of no clearance
- in a perpendicular direction of force
- under standard ambient temperature
Key elements affecting lifting force
In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured by applying a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet and the plate lowers the holding force.
Handle with Care: Neodymium Magnets
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are extremely delicate, they easily break and can crumble.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Do not give neodymium magnets to children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets may crack or crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very firmly.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Pay attention!
To show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.