e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. Practically all "magnets" on our website are in stock for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for searching F200 GOLD

Where to purchase very strong magnet? Holders with magnets in airtight, solid enclosure are excellent for use in variable and difficult weather conditions, including snow and rain more...

magnets with holders

Magnetic holders can be used to improve manufacturing, exploring underwater areas, or locating meteorites made of metal more information...

Enjoy delivery of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x15 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010084

GTIN: 5906301810834

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

15 mm

Weight

2.21 g

Magnetization Direction

↑ axial

Load capacity

4.15 kg / 40.7 N

Magnetic Induction

610.03 mT

Coating

[NiCuNi] nickel

1.107 with VAT / pcs + price for transport

0.900 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.900 ZŁ
1.107 ZŁ
price from 700 pcs
0.846 ZŁ
1.041 ZŁ
price from 2800 pcs
0.792 ZŁ
0.974 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 22 499 98 98 alternatively drop us a message through our online form the contact page.
Weight as well as structure of neodymium magnets can be checked on our force calculator.

Same-day processing for orders placed before 14:00.

MW 5x15 / N38 - cylindrical magnet

Specification/characteristics MW 5x15 / N38 - cylindrical magnet
properties
values
Cat. no.
010084
GTIN
5906301810834
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
2.21 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
4.15 kg / 40.7 N
Magnetic Induction ~ ?
610.03 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 5x15 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed ordinary ferrite magnets. Thanks to their strength, they are often used in devices that require powerful holding. The standard temperature resistance of these magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet designated MW 5x15 / N38 and a magnetic lifting capacity of 4.15 kg weighs only 2.21 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of gold-nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to check the site for the current information and promotions, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are practical in various applications, they can also constitute certain dangers. Due to their significant magnetic power, they can attract metallic objects with great force, which can lead to damaging skin or other materials, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with other metals and then forming and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as gold, to shield them from external factors and prolong their durability. Temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet in classes N52 and N50 is a powerful and strong metallic component in the form of a cylinder, providing high force and universal applicability. Attractive price, availability, ruggedness and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • The use of a polished nickel surface provides a refined finish,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for precise shaping or adjustment to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Wide application in new technology industries – they find application in HDDs, electric drives, diagnostic apparatus along with sophisticated instruments,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of polymer,
  • Limited ability to create complex details in the magnet – the use of a housing is recommended,
  • Health risk from tiny pieces may arise, if ingested accidentally, which is notable in the context of child safety. Furthermore, minuscule fragments from these devices can complicate medical imaging if inside the body,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given pulling force of the magnet represents the maximum force, assessed in the best circumstances, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • under perpendicular detachment force
  • in normal thermal conditions

Key elements affecting lifting force

Practical lifting force is dependent on elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the load capacity is reduced by as much as 75%. Moreover, even a small distance {between} the magnet and the plate decreases the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are incredibly fragile, they easily break as well as can become damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Pay attention!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98