e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. All "magnets" on our website are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to buy very strong magnet? Magnetic holders in airtight and durable steel casing are perfect for use in difficult weather conditions, including during snow and rain more...

magnetic holders

Holders with magnets can be used to improve production, underwater discoveries, or locating space rocks from gold see more...

Order always shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x15 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010084

GTIN: 5906301810834

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

15 mm

Weight

2.21 g

Magnetization Direction

↑ axial

Load capacity

4.15 kg / 40.7 N

Magnetic Induction

610.03 mT

Coating

[NiCuNi] nickel

1.107 with VAT / pcs + price for transport

0.900 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.900 ZŁ
1.107 ZŁ
price from 700 pcs
0.846 ZŁ
1.041 ZŁ
price from 2800 pcs
0.792 ZŁ
0.974 ZŁ

Looking for a better price?

Give us a call +48 888 99 98 98 if you prefer get in touch through inquiry form the contact form page.
Strength and appearance of a neodymium magnet can be verified with our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

MW 5x15 / N38 - cylindrical magnet

Specification/characteristics MW 5x15 / N38 - cylindrical magnet
properties
values
Cat. no.
010084
GTIN
5906301810834
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
2.21 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
4.15 kg / 40.7 N
Magnetic Induction ~ ?
610.03 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 5x15 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which exceed traditional ferrite magnets. Thanks to their strength, they are often used in products that need strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet named MW 5x15 / N38 with a magnetic lifting capacity of 4.15 kg weighs only 2.21 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of silver to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the website for the current information and offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very useful in various applications, they can also constitute certain risk. Because of their strong magnetic power, they can pull metallic objects with great force, which can lead to crushing skin or other surfaces, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are handy, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then shaping and heat treating. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as nickel, to protect them from external factors and prolong their durability. Temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
A cylindrical neodymium magnet in classes N52 and N50 is a powerful and highly strong magnetic product shaped like a cylinder, featuring strong holding power and broad usability. Good price, availability, ruggedness and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They retain their full power for nearly 10 years – the loss is just ~1% (according to analyses),
  • They are extremely resistant to demagnetization caused by external magnetic sources,
  • In other words, due to the glossy gold coating, the magnet obtains an professional appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • With the right combination of magnetic alloys, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
  • The ability for precise shaping as well as customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Key role in new technology industries – they serve a purpose in computer drives, electric motors, medical equipment or even sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall robustness,
  • They lose power at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a wet environment. For outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • Limited ability to create precision features in the magnet – the use of a housing is recommended,
  • Health risk due to small fragments may arise, when consumed by mistake, which is significant in the health of young users. Furthermore, small elements from these magnets have the potential to complicate medical imaging when ingested,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Detachment force of the magnet in optimal conditionswhat affects it?

The given strength of the magnet corresponds to the optimal strength, assessed in ideal conditions, that is:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, however under shearing force the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.

Be Cautious with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Neodymium magnets will bounce and also contact together within a radius of several to around 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnetic are highly susceptible to damage, resulting in shattering.

Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Warning!

In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98