MW 5x15 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010084
GTIN: 5906301810834
Diameter Ø [±0,1 mm]
5 mm
Height [±0,1 mm]
15 mm
Weight
2.21 g
Magnetization Direction
↑ axial
Load capacity
4.15 kg / 40.7 N
Magnetic Induction
610.03 mT
Coating
[NiCuNi] nickel
1.107 ZŁ with VAT / pcs + price for transport
0.900 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Call us now
+48 888 99 98 98
if you prefer let us know through
our online form
the contact page.
Weight along with appearance of a magnet can be calculated using our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
MW 5x15 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold-nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as silver, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They do not lose their power nearly ten years – the loss of power is only ~1% (based on measurements),
- They protect against demagnetization induced by surrounding magnetic fields very well,
- Thanks to the polished finish and gold coating, they have an visually attractive appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- With the right combination of magnetic alloys, they reach significant thermal stability, enabling operation at or above 230°C (depending on the form),
- With the option for customized forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
- Wide application in new technology industries – they serve a purpose in data storage devices, electric drives, diagnostic apparatus or even other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally reinforces its overall durability,
- They lose field intensity at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
- Potential hazard from tiny pieces may arise, if ingested accidentally, which is significant in the health of young users. It should also be noted that miniature parts from these products can interfere with diagnostics if inside the body,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Best holding force of the magnet in ideal parameters – what it depends on?
The given pulling force of the magnet represents the maximum force, assessed under optimal conditions, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the load capacity is reduced by as much as 75%. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the holding force.
Exercise Caution with Neodymium Magnets
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from the wallet, computer, and TV.
Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnetic are delicate and can easily break and get damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
It is essential to keep neodymium magnets out of reach from children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Safety rules!
To show why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.
