e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. All "magnets" in our store are in stock for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for fishing F300 GOLD

Where to purchase very strong magnet? Holders with magnets in solid and airtight enclosure are excellent for use in challenging weather, including in the rain and snow check...

magnetic holders

Holders with magnets can be used to facilitate production, underwater discoveries, or finding meteors from gold check...

Enjoy delivery of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 60x20x10 / N38 - lamellar magnet

lamellar magnet

Catalog no 020174

GTIN: 5906301811800

5

length [±0,1 mm]

60 mm

Width [±0,1 mm]

20 mm

Height [±0,1 mm]

10 mm

Weight

90 g

Magnetization Direction

↑ axial

Load capacity

27.36 kg / 268.31 N

Magnetic Induction

329.64 mT

Coating

[NiCuNi] nickel

125.00 with VAT / pcs + price for transport

101.63 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
101.63 ZŁ
125.00 ZŁ
price from 6 pcs
95.53 ZŁ
117.50 ZŁ
price from 25 pcs
89.43 ZŁ
110.00 ZŁ

Do you have trouble choosing?

Pick up the phone and ask +48 22 499 98 98 or let us know through request form the contact section.
Weight and shape of neodymium magnets can be checked on our force calculator.

Order by 14:00 and we’ll ship today!

MPL 60x20x10 / N38 - lamellar magnet

Specification/characteristics MPL 60x20x10 / N38 - lamellar magnet
properties
values
Cat. no.
020174
GTIN
5906301811800
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
60 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
90 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
27.36 kg / 268.31 N
Magnetic Induction ~ ?
329.64 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets min. MPL 60x20x10 / N38 are magnets made from neodymium in a flat form. They are known for their extremely powerful magnetic properties, which outshine standard iron magnets.
Due to their power, flat magnets are frequently used in structures that require strong holding power.
The standard temperature resistance of these magnets is 80 °C, but with larger dimensions, this value can increase.
In addition, flat magnets usually have different coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their corrosion resistance.
The magnet with the designation MPL 60x20x10 / N38 i.e. a magnetic strength 27.36 kg which weighs just 90 grams, making it the perfect choice for applications requiring a flat shape.
Neodymium flat magnets present a range of advantages versus other magnet shapes, which make them being the best choice for many applications:
Contact surface: Due to their flat shape, flat magnets ensure a larger contact surface with adjacent parts, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often utilized in many devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: This form's flat shape simplifies mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows creators a lot of flexibility in placing them in devices, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may provide better stability, reducing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific project and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be more appropriate.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron elements, nickel, materials with cobalt and special alloys of ferromagnetic metals. Moreover, magnets may weaker affect alloys containing iron, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of these objects creates attractive forces, which affect materials containing iron or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, such as two north poles, repel each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
Magnets do not attract plastic, glass items, wood and most gemstones. Moreover, magnets do not affect most metals, such as copper items, aluminum, copper, aluminum, and gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or electronic devices sensitive to magnetic fields. For this reason, it is important to exercise caution when using magnets.
A neodymium plate magnet N50 and N52 is a powerful and strong metallic component in the form of a plate, that offers high force and versatile application. Good price, 24h delivery, durability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They do not lose their magnetism, even after nearly ten years – the loss of lifting capacity is only ~1% (based on measurements),
  • They are very resistant to demagnetization caused by external magnetic sources,
  • In other words, due to the shiny gold coating, the magnet obtains an aesthetic appearance,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for fine forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Important function in cutting-edge sectors – they are utilized in hard drives, rotating machines, diagnostic apparatus along with other advanced devices,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall durability,
  • They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a housing is recommended,
  • Safety concern related to magnet particles may arise, if ingested accidentally, which is crucial in the health of young users. Furthermore, miniature parts from these products can complicate medical imaging after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Notes with Neodymium Magnets

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

  Magnets are not toys, youngest should not play with them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnetic are highly delicate, they easily crack as well as can crumble.

Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

In the situation of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Be careful!

To show why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98