Powerful neodymium magnets: discs and cylinders

Want to buy really powerful magnets? We have in stock wide selection of various shapes and sizes. Best choice for home use, garage and industrial tasks. Check our offer available immediately.

see price list and dimensions

Magnet fishing: solid F200/F400 sets

Start your adventure related to seabed exploration! Our double-handle grips (F200, F400) provide grip certainty and huge lifting capacity. Stainless steel construction and strong lines will perform in rivers and lakes.

choose your water magnet

Magnetic mounts for industry

Professional solutions for fixing non-invasive. Threaded mounts (M8, M10, M12) provide instant organization of work on production halls. Perfect for installing lighting, sensors and ads.

check available threads

📦 Fast shipping: buy by 14:00, we'll ship today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MPL 60x20x10 / N38 - lamellar magnet

lamellar magnet

Catalog no 020174

GTIN/EAN: 5906301811800

5.00

length

60 mm [±0,1 mm]

Width

20 mm [±0,1 mm]

Height

10 mm [±0,1 mm]

Weight

90 g

Magnetization Direction

↑ axial

Load capacity

35.61 kg / 349.34 N

Magnetic Induction

329.64 mT / 3296 Gs

Coating

[NiCuNi] Nickel

68.27 with VAT / pcs + price for transport

55.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
55.50 ZŁ
68.27 ZŁ
price from 20 pcs
52.17 ZŁ
64.17 ZŁ
price from 50 pcs
48.84 ZŁ
60.07 ZŁ
Do you have trouble choosing?

Call us now +48 22 499 98 98 otherwise get in touch through request form the contact section.
Specifications along with form of a neodymium magnet can be tested on our our magnetic calculator.

Same-day processing for orders placed before 14:00.

Physical properties - MPL 60x20x10 / N38 - lamellar magnet

Specification / characteristics - MPL 60x20x10 / N38 - lamellar magnet

properties
properties values
Cat. no. 020174
GTIN/EAN 5906301811800
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 60 mm [±0,1 mm]
Width 20 mm [±0,1 mm]
Height 10 mm [±0,1 mm]
Weight 90 g
Magnetization Direction ↑ axial
Load capacity ~ ? 35.61 kg / 349.34 N
Magnetic Induction ~ ? 329.64 mT / 3296 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 60x20x10 / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical simulation of the magnet - data

Presented information constitute the direct effect of a engineering calculation. Results are based on algorithms for the class Nd2Fe14B. Operational performance might slightly differ from theoretical values. Use these data as a preliminary roadmap when designing systems.

Table 1: Static force (force vs distance) - power drop
MPL 60x20x10 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3296 Gs
329.6 mT
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
critical level
1 mm 3087 Gs
308.7 mT
31.25 kg / 68.89 lbs
31248.2 g / 306.5 N
critical level
2 mm 2866 Gs
286.6 mT
26.93 kg / 59.37 lbs
26929.3 g / 264.2 N
critical level
3 mm 2643 Gs
264.3 mT
22.90 kg / 50.48 lbs
22895.5 g / 224.6 N
critical level
5 mm 2216 Gs
221.6 mT
16.10 kg / 35.50 lbs
16103.3 g / 158.0 N
critical level
10 mm 1397 Gs
139.7 mT
6.40 kg / 14.11 lbs
6402.3 g / 62.8 N
medium risk
15 mm 907 Gs
90.7 mT
2.70 kg / 5.95 lbs
2697.7 g / 26.5 N
medium risk
20 mm 615 Gs
61.5 mT
1.24 kg / 2.73 lbs
1239.2 g / 12.2 N
weak grip
30 mm 314 Gs
31.4 mT
0.32 kg / 0.71 lbs
322.6 g / 3.2 N
weak grip
50 mm 108 Gs
10.8 mT
0.04 kg / 0.09 lbs
38.6 g / 0.4 N
weak grip

Table 2: Vertical load (wall)
MPL 60x20x10 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 7.12 kg / 15.70 lbs
7122.0 g / 69.9 N
1 mm Stal (~0.2) 6.25 kg / 13.78 lbs
6250.0 g / 61.3 N
2 mm Stal (~0.2) 5.39 kg / 11.87 lbs
5386.0 g / 52.8 N
3 mm Stal (~0.2) 4.58 kg / 10.10 lbs
4580.0 g / 44.9 N
5 mm Stal (~0.2) 3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
10 mm Stal (~0.2) 1.28 kg / 2.82 lbs
1280.0 g / 12.6 N
15 mm Stal (~0.2) 0.54 kg / 1.19 lbs
540.0 g / 5.3 N
20 mm Stal (~0.2) 0.25 kg / 0.55 lbs
248.0 g / 2.4 N
30 mm Stal (~0.2) 0.06 kg / 0.14 lbs
64.0 g / 0.6 N
50 mm Stal (~0.2) 0.01 kg / 0.02 lbs
8.0 g / 0.1 N

Table 3: Vertical assembly (sliding) - vertical pull
MPL 60x20x10 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
10.68 kg / 23.55 lbs
10683.0 g / 104.8 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
7.12 kg / 15.70 lbs
7122.0 g / 69.9 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
3.56 kg / 7.85 lbs
3561.0 g / 34.9 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
17.81 kg / 39.25 lbs
17805.0 g / 174.7 N

Table 4: Steel thickness (saturation) - power losses
MPL 60x20x10 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
5%
1.78 kg / 3.93 lbs
1780.5 g / 17.5 N
1 mm
13%
4.45 kg / 9.81 lbs
4451.3 g / 43.7 N
2 mm
25%
8.90 kg / 19.63 lbs
8902.5 g / 87.3 N
3 mm
38%
13.35 kg / 29.44 lbs
13353.8 g / 131.0 N
5 mm
63%
22.26 kg / 49.07 lbs
22256.3 g / 218.3 N
10 mm
100%
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
11 mm
100%
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
12 mm
100%
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N

Table 5: Thermal resistance (stability) - power drop
MPL 60x20x10 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
OK
40 °C -2.2% 34.83 kg / 76.78 lbs
34826.6 g / 341.6 N
OK
60 °C -4.4% 34.04 kg / 75.05 lbs
34043.2 g / 334.0 N
80 °C -6.6% 33.26 kg / 73.33 lbs
33259.7 g / 326.3 N
100 °C -28.8% 25.35 kg / 55.90 lbs
25354.3 g / 248.7 N

Table 6: Magnet-Magnet interaction (repulsion) - field range
MPL 60x20x10 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Strength (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 80.35 kg / 177.15 lbs
4 692 Gs
12.05 kg / 26.57 lbs
12053 g / 118.2 N
N/A
1 mm 75.49 kg / 166.43 lbs
6 389 Gs
11.32 kg / 24.96 lbs
11324 g / 111.1 N
67.94 kg / 149.79 lbs
~0 Gs
2 mm 70.51 kg / 155.45 lbs
6 174 Gs
10.58 kg / 23.32 lbs
10577 g / 103.8 N
63.46 kg / 139.90 lbs
~0 Gs
3 mm 65.58 kg / 144.58 lbs
5 955 Gs
9.84 kg / 21.69 lbs
9837 g / 96.5 N
59.02 kg / 130.12 lbs
~0 Gs
5 mm 56.11 kg / 123.71 lbs
5 508 Gs
8.42 kg / 18.56 lbs
8417 g / 82.6 N
50.50 kg / 111.34 lbs
~0 Gs
10 mm 36.34 kg / 80.11 lbs
4 432 Gs
5.45 kg / 12.02 lbs
5450 g / 53.5 N
32.70 kg / 72.10 lbs
~0 Gs
20 mm 14.45 kg / 31.85 lbs
2 795 Gs
2.17 kg / 4.78 lbs
2167 g / 21.3 N
13.00 kg / 28.66 lbs
~0 Gs
50 mm 1.38 kg / 3.05 lbs
865 Gs
0.21 kg / 0.46 lbs
208 g / 2.0 N
1.25 kg / 2.75 lbs
~0 Gs
60 mm 0.73 kg / 1.60 lbs
627 Gs
0.11 kg / 0.24 lbs
109 g / 1.1 N
0.66 kg / 1.44 lbs
~0 Gs
70 mm 0.40 kg / 0.89 lbs
467 Gs
0.06 kg / 0.13 lbs
60 g / 0.6 N
0.36 kg / 0.80 lbs
~0 Gs
80 mm 0.23 kg / 0.51 lbs
355 Gs
0.03 kg / 0.08 lbs
35 g / 0.3 N
0.21 kg / 0.46 lbs
~0 Gs
90 mm 0.14 kg / 0.31 lbs
275 Gs
0.02 kg / 0.05 lbs
21 g / 0.2 N
0.13 kg / 0.28 lbs
~0 Gs
100 mm 0.09 kg / 0.19 lbs
217 Gs
0.01 kg / 0.03 lbs
13 g / 0.1 N
0.08 kg / 0.17 lbs
~0 Gs

Table 7: Safety (HSE) (implants) - warnings
MPL 60x20x10 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 16.5 cm
Hearing aid 10 Gs (1.0 mT) 13.0 cm
Timepiece 20 Gs (2.0 mT) 10.0 cm
Phone / Smartphone 40 Gs (4.0 mT) 8.0 cm
Remote 50 Gs (5.0 mT) 7.0 cm
Payment card 400 Gs (40.0 mT) 3.0 cm
HDD hard drive 600 Gs (60.0 mT) 2.5 cm

Table 8: Dynamics (kinetic energy) - collision effects
MPL 60x20x10 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 22.20 km/h
(6.17 m/s)
1.71 J
30 mm 34.94 km/h
(9.71 m/s)
4.24 J
50 mm 44.89 km/h
(12.47 m/s)
7.00 J
100 mm 63.44 km/h
(17.62 m/s)
13.97 J

Table 9: Coating parameters (durability)
MPL 60x20x10 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MPL 60x20x10 / N38

Parameter Value SI Unit / Description
Magnetic Flux 37 480 Mx 374.8 µWb
Pc Coefficient 0.35 Low (Flat)

Table 11: Submerged application
MPL 60x20x10 / N38

Environment Effective steel pull Effect
Air (land) 35.61 kg Standard
Water (riverbed) 40.77 kg
(+5.16 kg buoyancy gain)
+14.5%
Warning: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Vertical hold

*Caution: On a vertical surface, the magnet retains just ~20% of its perpendicular strength.

2. Plate thickness effect

*Thin metal sheet (e.g. 0.5mm PC case) drastically weakens the holding force.

3. Power loss vs temp

*For N38 grade, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.35

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020174-2026
Magnet Unit Converter
Magnet pull force

Field Strength

Check out also deals

Model MPL 60x20x10 / N38 features a low profile and professional pulling force, making it a perfect solution for building separators and machines. This magnetic block with a force of 349.34 N is ready for shipment in 24h, allowing for rapid realization of your project. The durable anti-corrosion layer ensures a long lifespan in a dry environment, protecting the core from oxidation.
Separating block magnets requires a technique based on sliding (moving one relative to the other), rather than forceful pulling apart. To separate the MPL 60x20x10 / N38 model, firmly slide one magnet over the edge of the other until the attraction force decreases. We recommend care, because after separation, the magnets may want to violently snap back together, which threatens pinching the skin. Using a screwdriver risks destroying the coating and permanently cracking the magnet.
They constitute a key element in the production of wind generators and material handling systems. Thanks to the flat surface and high force (approx. 35.61 kg), they are ideal as closers in furniture making and mounting elements in automation. Customers often choose this model for workshop organization on strips and for advanced DIY and modeling projects, where precision and power count.
For mounting flat magnets MPL 60x20x10 / N38, it is best to use strong epoxy glues (e.g., UHU Endfest, Distal), which ensure a durable bond with metal or plastic. Double-sided tape cushions vibrations, which is an advantage when mounting in moving elements. Avoid chemically aggressive glues or hot glue, which can demagnetize neodymium (above 80°C).
The magnetic axis runs through the shortest dimension, which is typical for gripper magnets. In practice, this means that this magnet has the greatest attraction force on its main planes (60x20 mm), which is ideal for flat mounting. This is the most popular configuration for block magnets used in separators and holders.
The presented product is a neodymium magnet with precisely defined parameters: 60 mm (length), 20 mm (width), and 10 mm (thickness). The key parameter here is the holding force amounting to approximately 35.61 kg (force ~349.34 N), which, with such a compact shape, proves the high grade of the material. The product meets the standards for N38 grade magnets.

Strengths as well as weaknesses of rare earth magnets.

Strengths

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
  • Their power remains stable, and after approximately 10 years it drops only by ~1% (theoretically),
  • They feature excellent resistance to magnetism drop when exposed to external fields,
  • By applying a reflective coating of nickel, the element gains an elegant look,
  • Neodymium magnets ensure maximum magnetic induction on a small area, which allows for strong attraction,
  • Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
  • Possibility of custom modeling and adapting to individual requirements,
  • Wide application in high-tech industry – they are commonly used in data components, electromotive mechanisms, advanced medical instruments, as well as modern systems.
  • Compactness – despite small sizes they provide effective action, making them ideal for precision applications

Disadvantages

Disadvantages of neodymium magnets:
  • They are fragile upon heavy impacts. To avoid cracks, it is worth securing magnets in a protective case. Such protection not only protects the magnet but also improves its resistance to damage
  • When exposed to high temperature, neodymium magnets suffer a drop in strength. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
  • Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material resistant to moisture, when using outdoors
  • Due to limitations in creating nuts and complex shapes in magnets, we recommend using a housing - magnetic holder.
  • Potential hazard related to microscopic parts of magnets are risky, when accidentally swallowed, which becomes key in the context of child safety. Additionally, tiny parts of these products are able to complicate diagnosis medical after entering the body.
  • High unit price – neodymium magnets cost more than other types of magnets (e.g. ferrite), which increases costs of application in large quantities

Holding force characteristics

Maximum magnetic pulling forcewhat it depends on?

The lifting capacity listed is a measurement result performed under standard conditions:
  • with the use of a yoke made of special test steel, guaranteeing maximum field concentration
  • with a thickness no less than 10 mm
  • with an ground contact surface
  • with total lack of distance (without impurities)
  • under perpendicular force direction (90-degree angle)
  • at ambient temperature room level

Magnet lifting force in use – key factors

Effective lifting capacity is affected by specific conditions, including (from priority):
  • Clearance – existence of foreign body (paint, tape, gap) acts as an insulator, which reduces capacity steeply (even by 50% at 0.5 mm).
  • Direction of force – highest force is reached only during pulling at a 90° angle. The resistance to sliding of the magnet along the surface is standardly many times lower (approx. 1/5 of the lifting capacity).
  • Wall thickness – thin material does not allow full use of the magnet. Part of the magnetic field passes through the material instead of converting into lifting capacity.
  • Steel grade – the best choice is high-permeability steel. Stainless steels may attract less.
  • Plate texture – smooth surfaces ensure maximum contact, which improves field saturation. Uneven metal weaken the grip.
  • Thermal environment – heating the magnet results in weakening of force. It is worth remembering the thermal limit for a given model.

Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the load capacity is reduced by as much as fivefold. In addition, even a slight gap between the magnet and the plate reduces the holding force.

Safe handling of NdFeB magnets
Finger safety

Danger of trauma: The pulling power is so immense that it can cause blood blisters, pinching, and broken bones. Use thick gloves.

Data carriers

Intense magnetic fields can corrupt files on payment cards, HDDs, and storage devices. Keep a distance of min. 10 cm.

Thermal limits

Avoid heat. NdFeB magnets are sensitive to temperature. If you need resistance above 80°C, ask us about HT versions (H, SH, UH).

GPS and phone interference

Navigation devices and smartphones are highly sensitive to magnetism. Direct contact with a powerful NdFeB magnet can permanently damage the sensors in your phone.

Fire warning

Dust produced during cutting of magnets is flammable. Do not drill into magnets unless you are an expert.

Handling rules

Handle magnets with awareness. Their huge power can shock even experienced users. Stay alert and respect their force.

Allergic reactions

Warning for allergy sufferers: The nickel-copper-nickel coating consists of nickel. If redness happens, immediately stop handling magnets and use protective gear.

Adults only

NdFeB magnets are not toys. Swallowing a few magnets may result in them connecting inside the digestive tract, which constitutes a direct threat to life and requires urgent medical intervention.

Magnets are brittle

Despite the nickel coating, the material is brittle and not impact-resistant. Do not hit, as the magnet may shatter into hazardous fragments.

Medical implants

Life threat: Strong magnets can deactivate heart devices and defibrillators. Do not approach if you have electronic implants.

Security! Learn more about hazards in the article: Safety of working with magnets.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98