tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. Practically all "neodymium magnets" on our website are available for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for water searching F400 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in airtight, solid enclosure are ideally suited for use in difficult, demanding weather conditions, including snow and rain see...

magnets with holders

Magnetic holders can be applied to enhance manufacturing, underwater discoveries, or searching for meteorites from gold read...

Order always shipped on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 60x20x10 / N38 - lamellar magnet

lamellar magnet

Catalog no 020174

GTIN: 5906301811800

5

length [±0,1 mm]

60 mm

Width [±0,1 mm]

20 mm

Height [±0,1 mm]

10 mm

Weight

90 g

Magnetization Direction

↑ axial

Load capacity

27.36 kg / 268.31 N

Magnetic Induction

329.64 mT

Coating

[NiCuNi] nickel

125.00 with VAT / pcs + price for transport

101.63 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
101.63 ZŁ
125.00 ZŁ
price from 6 pcs
95.53 ZŁ
117.50 ZŁ
price from 25 pcs
89.43 ZŁ
110.00 ZŁ

Need advice?

Contact us by phone +48 22 499 98 98 alternatively get in touch through contact form through our site.
Weight and appearance of a neodymium magnet can be calculated using our force calculator.

Same-day shipping for orders placed before 14:00.

MPL 60x20x10 / N38 - lamellar magnet

Specification/characteristics MPL 60x20x10 / N38 - lamellar magnet
properties
values
Cat. no.
020174
GTIN
5906301811800
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
60 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
90 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
27.36 kg / 268.31 N
Magnetic Induction ~ ?
329.64 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 60x20x10 / N38 are magnets created from neodymium in a rectangular form. They are known for their very strong magnetic properties, which surpass ordinary iron magnets.
Due to their strength, flat magnets are commonly used in devices that require exceptional adhesion.
The standard temperature resistance of flat magnets is 80°C, but with larger dimensions, this value rises.
In addition, flat magnets often have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their strength.
The magnet with the designation MPL 60x20x10 / N38 and a lifting capacity of 27.36 kg with a weight of a mere 90 grams, making it the ideal choice for applications requiring a flat shape.
Neodymium flat magnets provide a range of advantages compared to other magnet shapes, which make them being the best choice for a multitude of projects:
Contact surface: Thanks to their flat shape, flat magnets guarantee a greater contact surface with other components, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: These are often applied in different devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: This form's flat shape makes mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility designers greater flexibility in placing them in structures, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may provide better stability, reducing the risk of sliding or rotating. It’s important to keep in mind that the optimal shape of the magnet depends on the given use and requirements. In certain cases, other shapes, like cylindrical or spherical, are more appropriate.
Attracted by magnets are objects made of ferromagnetic materials, such as iron, nickel, materials with cobalt and alloys of metals with magnetic properties. Moreover, magnets may lesser affect some other metals, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
The operation of magnets is based on the properties of their magnetic field, which is generated by the movement of electric charges within their material. The magnetic field of these objects creates attractive forces, which affect objects made of iron or other ferromagnetic substances.

Magnets have two main poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Similar poles, e.g. two north poles, act repelling on each other.
Due to these properties, magnets are regularly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its size and the materials used.
Magnets do not attract plastics, glass items, wood and precious stones. Additionally, magnets do not affect most metals, such as copper items, aluminum materials, copper, aluminum, and gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards or electronic devices sensitive to magnetic fields. Therefore, it is important to avoid placing magnets near such devices.
A neodymium magnet in classes N50 and N52 is a strong and extremely powerful metallic component with the shape of a plate, that offers high force and universal application. Competitive price, availability, ruggedness and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
  • They are highly resistant to demagnetization caused by external field interference,
  • Because of the reflective layer of silver, the component looks high-end,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Important function in new technology industries – they are used in hard drives, rotating machines, clinical machines and other advanced devices,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to external force, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally increases its overall robustness,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can corrode. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is difficult,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the health of young users. Additionally, tiny components from these products have the potential to disrupt scanning if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Exercise Caution with Neodymium Magnets

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are noted for being fragile, which can cause them to crumble.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

 It is important to maintain neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Safety rules!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98