SMZR 32x100 / N52 - magnetic separator with handle
magnetic separator with handle
Catalog no 140237
GTIN: 5906301813453
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
100 mm
Weight
660 g
369.00 ZŁ with VAT / pcs + price for transport
300.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 888 99 98 98
alternatively let us know by means of
inquiry form
the contact section.
Force as well as structure of a magnet can be checked on our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
SMZR 32x100 / N52 - magnetic separator with handle
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- Their magnetic field is maintained, and after around ten years, it drops only by ~1% (according to research),
- They remain magnetized despite exposure to magnetic surroundings,
- In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
- The outer field strength of the magnet shows remarkable magnetic properties,
- With the right combination of materials, they reach significant thermal stability, enabling operation at or above 230°C (depending on the form),
- With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Important function in cutting-edge sectors – they are used in HDDs, electric motors, medical equipment as well as technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them useful in miniature devices
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall durability,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to moisture can rust. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
- Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
- Safety concern due to small fragments may arise, in case of ingestion, which is notable in the family environments. Furthermore, minuscule fragments from these assemblies might complicate medical imaging after being swallowed,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Detachment force of the magnet in optimal conditions – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, assessed under optimal conditions, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a refined outer layer
- with zero air gap
- with vertical force applied
- under standard ambient temperature
Practical lifting capacity: influencing factors
Practical lifting force is dependent on elements, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured using a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under shearing force the load capacity is reduced by as much as 75%. In addition, even a small distance {between} the magnet’s surface and the plate lowers the lifting capacity.
Exercise Caution with Neodymium Magnets
Magnets made of neodymium are noted for being fragile, which can cause them to crumble.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Maintain neodymium magnets far from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Be careful!
So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.