MPL 40x15x5 / N38 - neodymium magnet
lamellar magnet
catalog number 020153
GTIN: 5906301811596
length
40
mm [±0,1 mm]
width
15
mm [±0,1 mm]
height
5
mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
9.67 kg / 94.83 N
magnetic induction ~
249.11 mT / 2,491 Gs
max. temperature
≤ 80
°C
catalog number 020153
GTIN: 5906301811596
length
40 mm [±0,1 mm]
width
15 mm [±0,1 mm]
height
5 mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
9.67 kg / 94.83 N
magnetic induction ~
249.11 mT / 2,491 Gs
max. temperature
≤ 80 °C
6.70 ZŁ gross price (including VAT) / pcs +
5.45 ZŁ net price + 23% VAT / pcs
bulk discounts:
need more quantity?Want to bargain?
Call us tel: +48 22 499 98 98 or contact us through contact form on the contact page. You can check the mass and the shape of neodymium magnets in our power calculator force calculator
Orders placed by 2:00 PM will be shipped on the same business day.
Specification: lamellar magnet 40x15x5 / N38 ↑ axial
Magnetic properties of the material N38
Physical properties of sintered neodymium magnets Nd2Fe14B
Thanks to their mighty power, flat magnets are regularly applied in products that need exceptional adhesion.
Typical temperature resistance of these magnets is 80°C, but with larger dimensions, this value can increase.
Additionally, flat magnets often have different coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their corrosion resistance.
The magnet labeled MPL 40x15x5 / N38 and a magnetic strength 9.67 kg with a weight of only 22.50 grams, making it the ideal choice for applications requiring a flat shape.
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often used in different devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: The flat form's flat shape makes it easier mounting, particularly when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets permits creators greater flexibility in placing them in structures, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet depends on the specific application and requirements. In certain cases, other shapes, like cylindrical or spherical, may be a better choice.
Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Poles of the same kind, such as two north poles, act repelling on each other.
Due to these properties, magnets are regularly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
It should be noted that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.
Compilation of suggested goods
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to immense strength, neodymium magnets have the following advantages:
- They do not lose their power (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
- They are highly resistant to demagnetization by external magnetic field,
- By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
- They exhibit very high magnetic induction on the surface of the magnet,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
- Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which enhances their versatility in applications.
- Key role in modern technologies – are utilized in hard drives, electric drive mechanisms, medical apparatus or other highly developed apparatuses.
Disadvantages of neodymium magnets:
- They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
- They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
- Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
- The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
- Potential hazard arising from small pieces of magnets are risky, when accidentally ingested, which is particularly important in the context of child safety. It's also worth noting that miniscule components of these devices can hinder the diagnostic process when they are in the body.
Safety Guidelines with Neodymium Magnets
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets may crack or crumble with careless joining to each other. You can't approach them to each other. At a distance less than 10 cm you should have them very firmly.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets are delicate and can easily break as well as get damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Keep neodymium magnets far from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can surprise you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are strong neodymium magnets?.