tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all "neodymium magnets" in our store are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight and durable steel casing are excellent for use in difficult, demanding climate conditions, including in the rain and snow read...

magnetic holders

Holders with magnets can be used to enhance production processes, exploring underwater areas, or finding meteorites made of metal check...

We promise to ship your order if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010083

GTIN: 5906301810827

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

10 mm

Weight

1.47 g

Magnetization Direction

↑ axial

Load capacity

2.76 kg / 27.07 N

Magnetic Induction

599.97 mT

Coating

[NiCuNi] nickel

0.80 with VAT / pcs + price for transport

0.65 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.65 ZŁ
0.80 ZŁ
price from 1000 pcs
0.61 ZŁ
0.75 ZŁ
price from 3900 pcs
0.57 ZŁ
0.70 ZŁ

Not sure where to buy?

Pick up the phone and ask +48 22 499 98 98 alternatively send us a note by means of contact form through our site.
Force along with form of magnets can be reviewed on our power calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 5x10 / N38 - cylindrical magnet

Specification/characteristics MW 5x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010083
GTIN
5906301810827
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
1.47 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.76 kg / 27.07 N
Magnetic Induction ~ ?
599.97 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 5x10 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which exceed traditional iron magnets. Because of their strength, they are often used in devices that require strong adhesion. The standard temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet with the designation MW 5x10 / N38 and a magnetic strength 2.76 kg has a weight of only 1.47 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of gold to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in many applications, they can also constitute certain risk. Because of their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to damaging skin and other materials, especially be careful with fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then shaping and heat treating. Their unmatched magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as silver, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical magnet in classes N52 and N50 is a powerful and strong metallic component designed as a cylinder, that offers high force and universal application. Good price, availability, resistance and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetism, neodymium magnets have these key benefits:

  • They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
  • They show strong resistance to demagnetization from external field exposure,
  • In other words, due to the shiny nickel coating, the magnet obtains an aesthetic appearance,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their application range,
  • Important function in new technology industries – they are utilized in computer drives, electric motors, diagnostic apparatus along with sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and reinforces its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can corrode. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Possible threat from tiny pieces may arise, especially if swallowed, which is significant in the family environments. Furthermore, small elements from these devices may interfere with diagnostics after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Best holding force of the magnet in ideal parameterswhat affects it?

The given lifting capacity of the magnet represents the maximum lifting force, calculated in a perfect environment, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Key elements affecting lifting force

The lifting capacity of a magnet depends on in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under parallel forces the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.

Precautions

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

If the joining of neodymium magnets is not controlled, at that time they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

 It is important to keep neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are fragile and can easily crack and get damaged.

Neodymium magnets are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Safety precautions!

To show why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98