tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight, solid steel casing are perfect for use in variable and difficult weather conditions, including in the rain and snow check...

magnetic holders

Holders with magnets can be applied to improve production, underwater discoveries, or searching for meteors made of ore more information...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x300 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130295

GTIN: 5906301812883

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

300 mm

Weight

0.01 g

836.40 with VAT / pcs + price for transport

680.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
680.00 ZŁ
836.40 ZŁ
price from 5 pcs
646.00 ZŁ
794.58 ZŁ
price from 10 pcs
612.00 ZŁ
752.76 ZŁ

Not sure which magnet to buy?

Give us a call +48 888 99 98 98 otherwise drop us a message by means of request form our website.
Lifting power and form of a magnet can be calculated using our force calculator.

Same-day processing for orders placed before 14:00.

SM 25x300 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x300 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130295
GTIN
5906301812883
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
300 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are embedded in a construction made of stainless steel usually AISI304. As a result, it is possible to precisely separate ferromagnetic particles from other materials. A fundamental component of its operation is the use of repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be collected. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are used in the food sector for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rollers are made from acid-resistant steel, EN 1.4301, intended for use in food.
Magnetic rollers, often called cylindrical magnets, are employed in food production, metal separation as well as waste processing. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets embedded in a tube made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the greater the magnet's power, the more effective. Nevertheless, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines will be more compressed. Otherwise, when the magnet is thick, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is utilized, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel is highly recommended due to its exceptional corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding extreme temperatures above 80 degrees, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and lose their power. Testing of the rollers should be carried out once every 24 months. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
  • They remain magnetized despite exposure to magnetic noise,
  • In other words, due to the glossy nickel coating, the magnet obtains an professional appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their application range,
  • Key role in advanced technical fields – they are utilized in data storage devices, electromechanical systems, clinical machines and sophisticated instruments,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall strength,
  • They lose strength at extreme temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
  • Possible threat linked to microscopic shards may arise, especially if swallowed, which is crucial in the family environments. Moreover, small elements from these assemblies can hinder health screening after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Best holding force of the magnet in ideal parameterswhat it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in the best circumstances, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as fivefold. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 It is essential to maintain neodymium magnets away from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnetic are known for being fragile, which can cause them to shatter.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Be careful!

In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98