SM 25x300 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130295
GTIN: 5906301812883
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
300 mm
Weight
0.01 g
836.40 ZŁ with VAT / pcs + price for transport
680.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure which magnet to buy?
Give us a call
+48 888 99 98 98
otherwise drop us a message by means of
request form
our website.
Lifting power and form of a magnet can be calculated using our
force calculator.
Same-day processing for orders placed before 14:00.
SM 25x300 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
- They remain magnetized despite exposure to magnetic noise,
- In other words, due to the glossy nickel coating, the magnet obtains an professional appearance,
- They possess intense magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their application range,
- Key role in advanced technical fields – they are utilized in data storage devices, electromechanical systems, clinical machines and sophisticated instruments,
- Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall strength,
- They lose strength at extreme temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
- Possible threat linked to microscopic shards may arise, especially if swallowed, which is crucial in the family environments. Moreover, small elements from these assemblies can hinder health screening after being swallowed,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Best holding force of the magnet in ideal parameters – what it depends on?
The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in the best circumstances, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a polished side
- with zero air gap
- with vertical force applied
- under standard ambient temperature
Lifting capacity in real conditions – factors
The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as fivefold. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.
Exercise Caution with Neodymium Magnets
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
It is essential to maintain neodymium magnets away from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnetic are known for being fragile, which can cause them to shatter.
Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Be careful!
In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.
