SM 25x300 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130295
GTIN: 5906301812883
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
300 mm
Weight
0.01 g
836.40 ZŁ with VAT / pcs + price for transport
680.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Contact us by phone
+48 888 99 98 98
otherwise contact us using
our online form
the contact form page.
Force along with shape of neodymium magnets can be estimated using our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 25x300 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetic energy, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over nearly 10 years their attraction force decreases symbolically – ~1% (according to theory),
- Their ability to resist magnetic interference from external fields is among the best,
- In other words, due to the glossy nickel coating, the magnet obtains an stylish appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their application range,
- Important function in cutting-edge sectors – they serve a purpose in hard drives, rotating machines, clinical machines as well as high-tech tools,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of rare earth magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and strengthens its overall resistance,
- They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of coated materials,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
- Possible threat from tiny pieces may arise, especially if swallowed, which is significant in the health of young users. Moreover, miniature parts from these assemblies can disrupt scanning if inside the body,
- Due to expensive raw materials, their cost is considerably higher,
Best holding force of the magnet in ideal parameters – what affects it?
The given holding capacity of the magnet means the highest holding force, calculated in the best circumstances, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
Key elements affecting lifting force
The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, however under shearing force the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.
Be Cautious with Neodymium Magnets
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are noted for their fragility, which can cause them to crumble.
Magnets made of neodymium are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Magnets are not toys, youngest should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Pay attention!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.
