MPL 10x10x3 / N38 - lamellar magnet
lamellar magnet
Catalog no 020111
GTIN: 5906301811176
length [±0,1 mm]
10 mm
Width [±0,1 mm]
10 mm
Height [±0,1 mm]
3 mm
Weight
2.25 g
Magnetization Direction
↑ axial
Load capacity
2.37 kg / 23.24 N
Magnetic Induction
293.71 mT
Coating
[NiCuNi] nickel
1.55 ZŁ with VAT / pcs + price for transport
1.26 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate the price?
Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.
Orders placed by 14:00 are shipped the same day.
MPL 10x10x3 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Due to their strength, flat magnets are frequently used in products that need exceptional adhesion.
Most common temperature resistance of these magnets is 80°C, but with larger dimensions, this value can increase.
In addition, flat magnets usually have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their durability.
The magnet named MPL 10x10x3 / N38 and a lifting capacity of ${capacity} kg which weighs just ${weight} grams, making it the ideal choice for projects needing a flat magnet.
Contact surface: Thanks to their flat shape, flat magnets guarantee a larger contact surface with other components, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often utilized in many devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is necessary for their operation.
Mounting: The flat form's flat shape simplifies mounting, particularly when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets permits designers greater flexibility in arranging them in structures, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may provide better stability, reducing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet depends on the specific application and requirements. In some cases, other shapes, like cylindrical or spherical, may be a better choice.
Magnets have two main poles: north (N) and south (S), which attract each other when they are different. Similar poles, such as two north poles, repel each other.
Thanks to this principle of operation, magnets are often used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.
Advantages and disadvantages of neodymium magnets
Neodymium magnets, also known as NdFeB magnets, are currently the strongest permanent magnets available on the market. Their exceptional magnetic properties make them suitable for various industries, technologies, and everyday life. Below are the key advantages:
- Immense attractive force: Even small neodymium magnets generate a very strong magnetic field.
- High coercivity: They are resistant to demagnetization by external magnetic fields.
- Wide operating temperature range: Standard neodymium magnets operate up to 80°C, with special versions up to 230°C.
- Variety of shapes and sizes: Available in many forms, making them easy to adapt to specific applications.
- Relatively low price compared to strength: They offer the best strength-to-price ratio among all magnets.
- Longevity: With proper use, they retain their magnetic properties for many years.
- Versatility of applications: From electric motors to speakers, separators, toys, and jewelry.
Despite numerous advantages, neodymium magnets also have certain disadvantages to consider:
- Brittleness: They are hard but brittle and prone to cracking or chipping upon impact.
- Limited operating temperature for standard versions: Above the Curie temperature, they lose their magnetic properties.
- Strong magnetic field can be dangerous: They can damage electronics, magnetic cards, and pose a risk of attracting metal objects with great force.
- Difficulties in mechanical processing: Due to their hardness and brittleness, processing them is complex.
Handle Neodymium Magnets with Caution
Neodymium magnetic are particularly fragile, resulting in shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets may crack or alternatively crumble with careless joining to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Keep neodymium magnets away from GPS and smartphones.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.