MPL 10x10x3 / N38 - lamellar magnet
lamellar magnet
Catalog no 020111
GTIN/EAN: 5906301811176
length
10 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
2.25 g
Magnetization Direction
↑ axial
Load capacity
2.32 kg / 22.77 N
Magnetic Induction
293.71 mT / 2937 Gs
Coating
[NiCuNi] Nickel
1.414 ZŁ with VAT / pcs + price for transport
1.150 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
alternatively drop us a message via
form
the contact page.
Strength as well as form of neodymium magnets can be analyzed on our
magnetic mass calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical details - MPL 10x10x3 / N38 - lamellar magnet
Specification / characteristics - MPL 10x10x3 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020111 |
| GTIN/EAN | 5906301811176 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 10 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 3 mm [±0,1 mm] |
| Weight | 2.25 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.32 kg / 22.77 N |
| Magnetic Induction ~ ? | 293.71 mT / 2937 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical simulation of the assembly - report
Presented data are the outcome of a engineering analysis. Results are based on algorithms for the material Nd2Fe14B. Operational conditions may deviate from the simulation results. Please consider these data as a reference point for designers.
Table 1: Static pull force (force vs gap) - characteristics
MPL 10x10x3 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2936 Gs
293.6 mT
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
strong |
| 1 mm |
2513 Gs
251.3 mT
|
1.70 kg / 3.75 lbs
1700.6 g / 16.7 N
|
weak grip |
| 2 mm |
2036 Gs
203.6 mT
|
1.12 kg / 2.46 lbs
1115.5 g / 10.9 N
|
weak grip |
| 3 mm |
1594 Gs
159.4 mT
|
0.68 kg / 1.51 lbs
683.9 g / 6.7 N
|
weak grip |
| 5 mm |
943 Gs
94.3 mT
|
0.24 kg / 0.53 lbs
239.3 g / 2.3 N
|
weak grip |
| 10 mm |
285 Gs
28.5 mT
|
0.02 kg / 0.05 lbs
21.8 g / 0.2 N
|
weak grip |
| 15 mm |
112 Gs
11.2 mT
|
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
|
weak grip |
| 20 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
weak grip |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
weak grip |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Shear hold (vertical surface)
MPL 10x10x3 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.46 kg / 1.02 lbs
464.0 g / 4.6 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 2 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
224.0 g / 2.2 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MPL 10x10x3 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 1.53 lbs
696.0 g / 6.8 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.46 kg / 1.02 lbs
464.0 g / 4.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.16 kg / 2.56 lbs
1160.0 g / 11.4 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MPL 10x10x3 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
|
| 1 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
| 2 mm |
|
1.16 kg / 2.56 lbs
1160.0 g / 11.4 N
|
| 3 mm |
|
1.74 kg / 3.84 lbs
1740.0 g / 17.1 N
|
| 5 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
| 10 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
| 11 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
| 12 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
Table 5: Thermal stability (stability) - thermal limit
MPL 10x10x3 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
OK |
| 40 °C | -2.2% |
2.27 kg / 5.00 lbs
2269.0 g / 22.3 N
|
OK |
| 60 °C | -4.4% |
2.22 kg / 4.89 lbs
2217.9 g / 21.8 N
|
|
| 80 °C | -6.6% |
2.17 kg / 4.78 lbs
2166.9 g / 21.3 N
|
|
| 100 °C | -28.8% |
1.65 kg / 3.64 lbs
1651.8 g / 16.2 N
|
Table 6: Two magnets (attraction) - field collision
MPL 10x10x3 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.31 kg / 11.71 lbs
4 526 Gs
|
0.80 kg / 1.76 lbs
797 g / 7.8 N
|
N/A |
| 1 mm |
4.63 kg / 10.20 lbs
5 480 Gs
|
0.69 kg / 1.53 lbs
694 g / 6.8 N
|
4.17 kg / 9.18 lbs
~0 Gs
|
| 2 mm |
3.89 kg / 8.59 lbs
5 027 Gs
|
0.58 kg / 1.29 lbs
584 g / 5.7 N
|
3.51 kg / 7.73 lbs
~0 Gs
|
| 3 mm |
3.19 kg / 7.03 lbs
4 549 Gs
|
0.48 kg / 1.05 lbs
478 g / 4.7 N
|
2.87 kg / 6.33 lbs
~0 Gs
|
| 5 mm |
2.01 kg / 4.44 lbs
3 613 Gs
|
0.30 kg / 0.67 lbs
302 g / 3.0 N
|
1.81 kg / 3.99 lbs
~0 Gs
|
| 10 mm |
0.55 kg / 1.21 lbs
1 886 Gs
|
0.08 kg / 0.18 lbs
82 g / 0.8 N
|
0.49 kg / 1.09 lbs
~0 Gs
|
| 20 mm |
0.05 kg / 0.11 lbs
569 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
60 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MPL 10x10x3 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.5 cm |
| Remote | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - warning
MPL 10x10x3 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
32.57 km/h
(9.05 m/s)
|
0.09 J | |
| 30 mm |
56.09 km/h
(15.58 m/s)
|
0.27 J | |
| 50 mm |
72.41 km/h
(20.11 m/s)
|
0.46 J | |
| 100 mm |
102.41 km/h
(28.45 m/s)
|
0.91 J |
Table 9: Coating parameters (durability)
MPL 10x10x3 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MPL 10x10x3 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 3 197 Mx | 32.0 µWb |
| Pc Coefficient | 0.36 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 10x10x3 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.32 kg | Standard |
| Water (riverbed) |
2.66 kg
(+0.34 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical wall, the magnet retains only a fraction of its perpendicular strength.
2. Plate thickness effect
*Thin metal sheet (e.g. 0.5mm PC case) significantly limits the holding force.
3. Thermal stability
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.36
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Strengths as well as weaknesses of rare earth magnets.
Pros
- They virtually do not lose power, because even after 10 years the decline in efficiency is only ~1% (based on calculations),
- They are extremely resistant to demagnetization induced by external field influence,
- A magnet with a shiny gold surface is more attractive,
- Neodymium magnets achieve maximum magnetic induction on a their surface, which increases force concentration,
- Thanks to resistance to high temperature, they are able to function (depending on the shape) even at temperatures up to 230°C and higher...
- Thanks to versatility in constructing and the capacity to customize to unusual requirements,
- Universal use in advanced technology sectors – they find application in hard drives, electric drive systems, diagnostic systems, as well as technologically advanced constructions.
- Thanks to their power density, small magnets offer high operating force, occupying minimum space,
Limitations
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth protecting magnets in a protective case. Such protection not only shields the magnet but also improves its resistance to damage
- NdFeB magnets lose strength when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
- Magnets exposed to a humid environment can rust. Therefore during using outdoors, we recommend using water-impermeable magnets made of rubber, plastic or other material resistant to moisture
- Due to limitations in producing nuts and complicated shapes in magnets, we recommend using a housing - magnetic mechanism.
- Possible danger to health – tiny shards of magnets are risky, if swallowed, which is particularly important in the context of child safety. It is also worth noting that small components of these devices are able to complicate diagnosis medical in case of swallowing.
- Due to neodymium price, their price exceeds standard values,
Lifting parameters
Best holding force of the magnet in ideal parameters – what it depends on?
- on a plate made of structural steel, perfectly concentrating the magnetic field
- with a cross-section of at least 10 mm
- characterized by even structure
- with zero gap (no paint)
- for force acting at a right angle (in the magnet axis)
- at standard ambient temperature
Determinants of practical lifting force of a magnet
- Space between surfaces – every millimeter of distance (caused e.g. by varnish or dirt) diminishes the pulling force, often by half at just 0.5 mm.
- Force direction – catalog parameter refers to pulling vertically. When slipping, the magnet holds significantly lower power (often approx. 20-30% of maximum force).
- Base massiveness – too thin sheet does not accept the full field, causing part of the flux to be lost into the air.
- Plate material – low-carbon steel gives the best results. Alloy steels lower magnetic permeability and lifting capacity.
- Plate texture – smooth surfaces guarantee perfect abutment, which increases force. Uneven metal weaken the grip.
- Operating temperature – NdFeB sinters have a sensitivity to temperature. At higher temperatures they lose power, and in frost gain strength (up to a certain limit).
Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a slight gap between the magnet’s surface and the plate lowers the lifting capacity.
Precautions when working with NdFeB magnets
Do not drill into magnets
Combustion risk: Rare earth powder is highly flammable. Avoid machining magnets in home conditions as this risks ignition.
Safe operation
Be careful. Neodymium magnets attract from a distance and connect with massive power, often faster than you can move away.
Warning for heart patients
Warning for patients: Powerful magnets affect electronics. Maintain at least 30 cm distance or request help to work with the magnets.
Threat to electronics
Do not bring magnets near a wallet, computer, or screen. The magnetic field can permanently damage these devices and wipe information from cards.
Fragile material
Watch out for shards. Magnets can fracture upon violent connection, launching shards into the air. We recommend safety glasses.
Metal Allergy
Allergy Notice: The Ni-Cu-Ni coating contains nickel. If redness appears, immediately stop working with magnets and use protective gear.
This is not a toy
Always store magnets away from children. Risk of swallowing is significant, and the effects of magnets clamping inside the body are fatal.
Power loss in heat
Avoid heat. Neodymium magnets are sensitive to heat. If you need operation above 80°C, inquire about HT versions (H, SH, UH).
Crushing risk
Pinching hazard: The pulling power is so immense that it can result in blood blisters, crushing, and broken bones. Use thick gloves.
Phone sensors
A powerful magnetic field disrupts the functioning of compasses in phones and GPS navigation. Maintain magnets near a smartphone to avoid damaging the sensors.
