Neodymiums – wide shape selection

Need strong magnetic field? Our range includes rich assortment of disc, cylindrical and ring magnets. Best choice for home use, workshop and industrial tasks. Check our offer in stock.

check full offer

Magnet fishing sets (hobbyists)

Start your adventure with treasure salvaging! Our specialized grips (F200, F400) provide safety guarantee and immense power. Stainless steel construction and strong lines will perform in rivers and lakes.

choose your water magnet

Industrial magnetic grips mounting

Reliable solutions for fixing non-invasive. Threaded grips (M8, M10, M12) guarantee quick improvement of work on warehouses. Perfect for mounting lighting, detectors and ads.

see technical specs

🚀 Lightning processing: orders by 14:00 shipped within 24h!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MPL 10x10x3 / N38 - lamellar magnet

lamellar magnet

Catalog no 020111

GTIN/EAN: 5906301811176

5.00

length

10 mm [±0,1 mm]

Width

10 mm [±0,1 mm]

Height

3 mm [±0,1 mm]

Weight

2.25 g

Magnetization Direction

↑ axial

Load capacity

2.32 kg / 22.77 N

Magnetic Induction

293.71 mT / 2937 Gs

Coating

[NiCuNi] Nickel

1.414 with VAT / pcs + price for transport

1.150 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.150 ZŁ
1.414 ZŁ
price from 550 pcs
1.081 ZŁ
1.330 ZŁ
price from 2200 pcs
1.012 ZŁ
1.245 ZŁ
Not sure about your choice?

Pick up the phone and ask +48 888 99 98 98 alternatively drop us a message via form the contact page.
Strength as well as form of neodymium magnets can be analyzed on our magnetic mass calculator.

Orders placed before 14:00 will be shipped the same business day.

Technical details - MPL 10x10x3 / N38 - lamellar magnet

Specification / characteristics - MPL 10x10x3 / N38 - lamellar magnet

properties
properties values
Cat. no. 020111
GTIN/EAN 5906301811176
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 10 mm [±0,1 mm]
Width 10 mm [±0,1 mm]
Height 3 mm [±0,1 mm]
Weight 2.25 g
Magnetization Direction ↑ axial
Load capacity ~ ? 2.32 kg / 22.77 N
Magnetic Induction ~ ? 293.71 mT / 2937 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 10x10x3 / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical simulation of the assembly - report

Presented data are the outcome of a engineering analysis. Results are based on algorithms for the material Nd2Fe14B. Operational conditions may deviate from the simulation results. Please consider these data as a reference point for designers.

Table 1: Static pull force (force vs gap) - characteristics
MPL 10x10x3 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 2936 Gs
293.6 mT
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
strong
1 mm 2513 Gs
251.3 mT
1.70 kg / 3.75 lbs
1700.6 g / 16.7 N
weak grip
2 mm 2036 Gs
203.6 mT
1.12 kg / 2.46 lbs
1115.5 g / 10.9 N
weak grip
3 mm 1594 Gs
159.4 mT
0.68 kg / 1.51 lbs
683.9 g / 6.7 N
weak grip
5 mm 943 Gs
94.3 mT
0.24 kg / 0.53 lbs
239.3 g / 2.3 N
weak grip
10 mm 285 Gs
28.5 mT
0.02 kg / 0.05 lbs
21.8 g / 0.2 N
weak grip
15 mm 112 Gs
11.2 mT
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
weak grip
20 mm 54 Gs
5.4 mT
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
weak grip
30 mm 18 Gs
1.8 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
weak grip
50 mm 4 Gs
0.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
weak grip

Table 2: Shear hold (vertical surface)
MPL 10x10x3 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.46 kg / 1.02 lbs
464.0 g / 4.6 N
1 mm Stal (~0.2) 0.34 kg / 0.75 lbs
340.0 g / 3.3 N
2 mm Stal (~0.2) 0.22 kg / 0.49 lbs
224.0 g / 2.2 N
3 mm Stal (~0.2) 0.14 kg / 0.30 lbs
136.0 g / 1.3 N
5 mm Stal (~0.2) 0.05 kg / 0.11 lbs
48.0 g / 0.5 N
10 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Vertical assembly (shearing) - vertical pull
MPL 10x10x3 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.70 kg / 1.53 lbs
696.0 g / 6.8 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.46 kg / 1.02 lbs
464.0 g / 4.6 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
1.16 kg / 2.56 lbs
1160.0 g / 11.4 N

Table 4: Steel thickness (substrate influence) - sheet metal selection
MPL 10x10x3 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
1 mm
25%
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
2 mm
50%
1.16 kg / 2.56 lbs
1160.0 g / 11.4 N
3 mm
75%
1.74 kg / 3.84 lbs
1740.0 g / 17.1 N
5 mm
100%
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
10 mm
100%
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
11 mm
100%
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
12 mm
100%
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N

Table 5: Thermal stability (stability) - thermal limit
MPL 10x10x3 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
OK
40 °C -2.2% 2.27 kg / 5.00 lbs
2269.0 g / 22.3 N
OK
60 °C -4.4% 2.22 kg / 4.89 lbs
2217.9 g / 21.8 N
80 °C -6.6% 2.17 kg / 4.78 lbs
2166.9 g / 21.3 N
100 °C -28.8% 1.65 kg / 3.64 lbs
1651.8 g / 16.2 N

Table 6: Two magnets (attraction) - field collision
MPL 10x10x3 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Strength (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 5.31 kg / 11.71 lbs
4 526 Gs
0.80 kg / 1.76 lbs
797 g / 7.8 N
N/A
1 mm 4.63 kg / 10.20 lbs
5 480 Gs
0.69 kg / 1.53 lbs
694 g / 6.8 N
4.17 kg / 9.18 lbs
~0 Gs
2 mm 3.89 kg / 8.59 lbs
5 027 Gs
0.58 kg / 1.29 lbs
584 g / 5.7 N
3.51 kg / 7.73 lbs
~0 Gs
3 mm 3.19 kg / 7.03 lbs
4 549 Gs
0.48 kg / 1.05 lbs
478 g / 4.7 N
2.87 kg / 6.33 lbs
~0 Gs
5 mm 2.01 kg / 4.44 lbs
3 613 Gs
0.30 kg / 0.67 lbs
302 g / 3.0 N
1.81 kg / 3.99 lbs
~0 Gs
10 mm 0.55 kg / 1.21 lbs
1 886 Gs
0.08 kg / 0.18 lbs
82 g / 0.8 N
0.49 kg / 1.09 lbs
~0 Gs
20 mm 0.05 kg / 0.11 lbs
569 Gs
0.01 kg / 0.02 lbs
7 g / 0.1 N
0.04 kg / 0.10 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
60 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
36 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
24 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
16 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
12 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
9 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Safety (HSE) (implants) - precautionary measures
MPL 10x10x3 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 5.0 cm
Hearing aid 10 Gs (1.0 mT) 4.0 cm
Mechanical watch 20 Gs (2.0 mT) 3.0 cm
Mobile device 40 Gs (4.0 mT) 2.5 cm
Remote 50 Gs (5.0 mT) 2.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Dynamics (cracking risk) - warning
MPL 10x10x3 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 32.57 km/h
(9.05 m/s)
0.09 J
30 mm 56.09 km/h
(15.58 m/s)
0.27 J
50 mm 72.41 km/h
(20.11 m/s)
0.46 J
100 mm 102.41 km/h
(28.45 m/s)
0.91 J

Table 9: Coating parameters (durability)
MPL 10x10x3 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Flux)
MPL 10x10x3 / N38

Parameter Value SI Unit / Description
Magnetic Flux 3 197 Mx 32.0 µWb
Pc Coefficient 0.36 Low (Flat)

Table 11: Hydrostatics and buoyancy
MPL 10x10x3 / N38

Environment Effective steel pull Effect
Air (land) 2.32 kg Standard
Water (riverbed) 2.66 kg
(+0.34 kg buoyancy gain)
+14.5%
Rust risk: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Sliding resistance

*Caution: On a vertical wall, the magnet retains only a fraction of its perpendicular strength.

2. Plate thickness effect

*Thin metal sheet (e.g. 0.5mm PC case) significantly limits the holding force.

3. Thermal stability

*For N38 material, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.36

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical specification and ecology
Elemental analysis
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Environmental data
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020111-2026
Quick Unit Converter
Magnet pull force

Magnetic Induction

Other products

Component MPL 10x10x3 / N38 features a low profile and professional pulling force, making it an ideal solution for building separators and machines. As a magnetic bar with high power (approx. 2.32 kg), this product is available immediately from our warehouse in Poland. The durable anti-corrosion layer ensures a long lifespan in a dry environment, protecting the core from oxidation.
The key to success is sliding the magnets along their largest connection plane (using e.g., the edge of a table), which is easier than trying to tear them apart directly. Watch your fingers! Magnets with a force of 2.32 kg can pinch very hard and cause hematomas. Never use metal tools for prying, as the brittle NdFeB material may chip and damage your eyes.
They constitute a key element in the production of wind generators and material handling systems. They work great as invisible mounts under tiles, wood, or glass. Their rectangular shape facilitates precise gluing into milled sockets in wood or plastic.
For mounting flat magnets MPL 10x10x3 / N38, we recommend utilizing two-component adhesives (e.g., UHU Endfest, Distal), which ensure a durable bond with metal or plastic. Double-sided tape cushions vibrations, which is an advantage when mounting in moving elements. Avoid chemically aggressive glues or hot glue, which can demagnetize neodymium (above 80°C).
The magnetic axis runs through the shortest dimension, which is typical for gripper magnets. Thanks to this, it works best when "sticking" to sheet metal or another magnet with a large surface area. Such a pole arrangement ensures maximum holding capacity when pressing against the sheet, creating a closed magnetic circuit.
The presented product is a neodymium magnet with precisely defined parameters: 10 mm (length), 10 mm (width), and 3 mm (thickness). It is a magnetic block with dimensions 10x10x3 mm and a self-weight of 2.25 g, ready to work at temperatures up to 80°C. The product meets the standards for N38 grade magnets.

Strengths as well as weaknesses of rare earth magnets.

Pros

Besides their exceptional strength, neodymium magnets offer the following advantages:
  • They virtually do not lose power, because even after 10 years the decline in efficiency is only ~1% (based on calculations),
  • They are extremely resistant to demagnetization induced by external field influence,
  • A magnet with a shiny gold surface is more attractive,
  • Neodymium magnets achieve maximum magnetic induction on a their surface, which increases force concentration,
  • Thanks to resistance to high temperature, they are able to function (depending on the shape) even at temperatures up to 230°C and higher...
  • Thanks to versatility in constructing and the capacity to customize to unusual requirements,
  • Universal use in advanced technology sectors – they find application in hard drives, electric drive systems, diagnostic systems, as well as technologically advanced constructions.
  • Thanks to their power density, small magnets offer high operating force, occupying minimum space,

Limitations

Characteristics of disadvantages of neodymium magnets: weaknesses and usage proposals
  • They are prone to damage upon heavy impacts. To avoid cracks, it is worth protecting magnets in a protective case. Such protection not only shields the magnet but also improves its resistance to damage
  • NdFeB magnets lose strength when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
  • Magnets exposed to a humid environment can rust. Therefore during using outdoors, we recommend using water-impermeable magnets made of rubber, plastic or other material resistant to moisture
  • Due to limitations in producing nuts and complicated shapes in magnets, we recommend using a housing - magnetic mechanism.
  • Possible danger to health – tiny shards of magnets are risky, if swallowed, which is particularly important in the context of child safety. It is also worth noting that small components of these devices are able to complicate diagnosis medical in case of swallowing.
  • Due to neodymium price, their price exceeds standard values,

Lifting parameters

Best holding force of the magnet in ideal parameterswhat it depends on?

Information about lifting capacity was determined for ideal contact conditions, assuming:
  • on a plate made of structural steel, perfectly concentrating the magnetic field
  • with a cross-section of at least 10 mm
  • characterized by even structure
  • with zero gap (no paint)
  • for force acting at a right angle (in the magnet axis)
  • at standard ambient temperature

Determinants of practical lifting force of a magnet

Holding efficiency is influenced by working environment parameters, including (from priority):
  • Space between surfaces – every millimeter of distance (caused e.g. by varnish or dirt) diminishes the pulling force, often by half at just 0.5 mm.
  • Force direction – catalog parameter refers to pulling vertically. When slipping, the magnet holds significantly lower power (often approx. 20-30% of maximum force).
  • Base massiveness – too thin sheet does not accept the full field, causing part of the flux to be lost into the air.
  • Plate material – low-carbon steel gives the best results. Alloy steels lower magnetic permeability and lifting capacity.
  • Plate texture – smooth surfaces guarantee perfect abutment, which increases force. Uneven metal weaken the grip.
  • Operating temperature – NdFeB sinters have a sensitivity to temperature. At higher temperatures they lose power, and in frost gain strength (up to a certain limit).

Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a slight gap between the magnet’s surface and the plate lowers the lifting capacity.

Precautions when working with NdFeB magnets
Do not drill into magnets

Combustion risk: Rare earth powder is highly flammable. Avoid machining magnets in home conditions as this risks ignition.

Safe operation

Be careful. Neodymium magnets attract from a distance and connect with massive power, often faster than you can move away.

Warning for heart patients

Warning for patients: Powerful magnets affect electronics. Maintain at least 30 cm distance or request help to work with the magnets.

Threat to electronics

Do not bring magnets near a wallet, computer, or screen. The magnetic field can permanently damage these devices and wipe information from cards.

Fragile material

Watch out for shards. Magnets can fracture upon violent connection, launching shards into the air. We recommend safety glasses.

Metal Allergy

Allergy Notice: The Ni-Cu-Ni coating contains nickel. If redness appears, immediately stop working with magnets and use protective gear.

This is not a toy

Always store magnets away from children. Risk of swallowing is significant, and the effects of magnets clamping inside the body are fatal.

Power loss in heat

Avoid heat. Neodymium magnets are sensitive to heat. If you need operation above 80°C, inquire about HT versions (H, SH, UH).

Crushing risk

Pinching hazard: The pulling power is so immense that it can result in blood blisters, crushing, and broken bones. Use thick gloves.

Phone sensors

A powerful magnetic field disrupts the functioning of compasses in phones and GPS navigation. Maintain magnets near a smartphone to avoid damaging the sensors.

Important! Details about hazards in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98