e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. Practically all "neodymium magnets" in our store are available for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in solid and airtight enclosure are perfect for use in challenging climate conditions, including in the rain and snow see...

magnets with holders

Magnetic holders can be used to facilitate production processes, exploring underwater areas, or locating meteorites made of ore more...

Shipping is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 5x1 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010082

GTIN: 5906301810810

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

1 mm

Weight

0.15 g

Magnetization Direction

↑ axial

Load capacity

0.28 kg / 2.75 N

Magnetic Induction

229.95 mT

Coating

[NiCuNi] nickel

0.18 with VAT / pcs + price for transport

0.15 ZŁ net + 23% VAT / pcs

0.12 ZŁ net was the lowest price in the last 30 days

bulk discounts:

Need more?

price from 1 pcs
0.15 ZŁ
0.18 ZŁ
price from 4000 pcs
0.14 ZŁ
0.17 ZŁ
price from 17000 pcs
0.13 ZŁ
0.16 ZŁ

Looking for a better price?

Give us a call +48 888 99 98 98 alternatively get in touch through inquiry form through our site.
Lifting power and shape of a magnet can be reviewed with our our magnetic calculator.

Same-day processing for orders placed before 14:00.

MW 5x1 / N38 - cylindrical magnet

Specification/characteristics MW 5x1 / N38 - cylindrical magnet
properties
values
Cat. no.
010082
GTIN
5906301810810
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.15 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.28 kg / 2.75 N
Magnetic Induction ~ ?
229.95 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 5x1 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which exceed traditional iron magnets. Thanks to their power, they are often employed in products that need strong adhesion. The typical temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet with the designation MW 5x1 / N38 with a magnetic strength 0.28 kg weighs only 0.15 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the site for the current information as well as promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are practical in many applications, they can also pose certain dangers. Because of their strong magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin and other materials, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then shaping and thermal processing. Their powerful magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as silver, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A cylindrical neodymium magnet with classification N50 and N52 is a powerful and strong metallic component designed as a cylinder, that offers strong holding power and universal application. Good price, availability, stability and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They have unchanged lifting capacity, and over more than ten years their performance decreases symbolically – ~1% (in testing),
  • They remain magnetized despite exposure to magnetic surroundings,
  • By applying a shiny layer of nickel, the element gains a modern look,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the form),
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
  • Key role in cutting-edge sectors – they are utilized in computer drives, rotating machines, diagnostic apparatus and technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them useful in small systems

Disadvantages of magnetic elements:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
  • Safety concern from tiny pieces may arise, if ingested accidentally, which is notable in the health of young users. Additionally, tiny components from these products have the potential to disrupt scanning when ingested,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Highest magnetic holding forcewhat affects it?

The given holding capacity of the magnet means the highest holding force, measured under optimal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

Lifting capacity in real conditions – factors

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, however under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.

Be Cautious with Neodymium Magnets

Neodymium magnetic are incredibly fragile, they easily break and can crumble.

Magnets made of neodymium are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 It is essential to maintain neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Be careful!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98