MW 5x1 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010082
GTIN/EAN: 5906301810810
Diameter Ø
5 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.15 g
Magnetization Direction
↑ axial
Load capacity
0.32 kg / 3.12 N
Magnetic Induction
229.95 mT / 2300 Gs
Coating
[NiCuNi] Nickel
0.1845 ZŁ with VAT / pcs + price for transport
0.1500 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 888 99 98 98
alternatively get in touch through
form
the contact form page.
Strength along with form of magnetic components can be reviewed using our
magnetic mass calculator.
Same-day shipping for orders placed before 14:00.
Product card - MW 5x1 / N38 - cylindrical magnet
Specification / characteristics - MW 5x1 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010082 |
| GTIN/EAN | 5906301810810 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 5 mm [±0,1 mm] |
| Height | 1 mm [±0,1 mm] |
| Weight | 0.15 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.32 kg / 3.12 N |
| Magnetic Induction ~ ? | 229.95 mT / 2300 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the assembly - technical parameters
The following information constitute the outcome of a physical simulation. Results are based on models for the material Nd2Fe14B. Operational parameters may differ from theoretical values. Please consider these calculations as a preliminary roadmap when designing systems.
Table 1: Static force (force vs distance) - characteristics
MW 5x1 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2298 Gs
229.8 mT
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
safe |
| 1 mm |
1570 Gs
157.0 mT
|
0.15 kg / 0.33 lbs
149.5 g / 1.5 N
|
safe |
| 2 mm |
890 Gs
89.0 mT
|
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
safe |
| 3 mm |
495 Gs
49.5 mT
|
0.01 kg / 0.03 lbs
14.8 g / 0.1 N
|
safe |
| 5 mm |
178 Gs
17.8 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
safe |
| 10 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
| 15 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 20 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Vertical hold (vertical surface)
MW 5x1 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MW 5x1 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
Table 4: Steel thickness (substrate influence) - power losses
MW 5x1 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 1 mm |
|
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| 2 mm |
|
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 3 mm |
|
0.24 kg / 0.53 lbs
240.0 g / 2.4 N
|
| 5 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 10 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 11 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 12 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MW 5x1 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
OK |
| 40 °C | -2.2% |
0.31 kg / 0.69 lbs
313.0 g / 3.1 N
|
OK |
| 60 °C | -4.4% |
0.31 kg / 0.67 lbs
305.9 g / 3.0 N
|
|
| 80 °C | -6.6% |
0.30 kg / 0.66 lbs
298.9 g / 2.9 N
|
|
| 100 °C | -28.8% |
0.23 kg / 0.50 lbs
227.8 g / 2.2 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MW 5x1 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.64 kg / 1.41 lbs
3 860 Gs
|
0.10 kg / 0.21 lbs
96 g / 0.9 N
|
N/A |
| 1 mm |
0.47 kg / 1.04 lbs
3 948 Gs
|
0.07 kg / 0.16 lbs
71 g / 0.7 N
|
0.42 kg / 0.94 lbs
~0 Gs
|
| 2 mm |
0.30 kg / 0.66 lbs
3 141 Gs
|
0.04 kg / 0.10 lbs
45 g / 0.4 N
|
0.27 kg / 0.59 lbs
~0 Gs
|
| 3 mm |
0.17 kg / 0.38 lbs
2 388 Gs
|
0.03 kg / 0.06 lbs
26 g / 0.3 N
|
0.16 kg / 0.34 lbs
~0 Gs
|
| 5 mm |
0.05 kg / 0.12 lbs
1 322 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.01 lbs
355 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - precautionary measures
MW 5x1 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 1.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.0 cm |
| Remote | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Collisions (cracking risk) - collision effects
MW 5x1 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
46.59 km/h
(12.94 m/s)
|
0.01 J | |
| 30 mm |
80.68 km/h
(22.41 m/s)
|
0.04 J | |
| 50 mm |
104.16 km/h
(28.93 m/s)
|
0.06 J | |
| 100 mm |
147.30 km/h
(40.92 m/s)
|
0.13 J |
Table 9: Surface protection spec
MW 5x1 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 5x1 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 524 Mx | 5.2 µWb |
| Pc Coefficient | 0.29 | Low (Flat) |
Table 11: Physics of underwater searching
MW 5x1 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.32 kg | Standard |
| Water (riverbed) |
0.37 kg
(+0.05 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Note: On a vertical wall, the magnet holds merely ~20% of its max power.
2. Steel thickness impact
*Thin steel (e.g. 0.5mm PC case) drastically reduces the holding force.
3. Power loss vs temp
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.29
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also products
Advantages as well as disadvantages of rare earth magnets.
Benefits
- They virtually do not lose strength, because even after ten years the decline in efficiency is only ~1% (in laboratory conditions),
- They have excellent resistance to weakening of magnetic properties as a result of opposing magnetic fields,
- A magnet with a metallic gold surface has better aesthetics,
- Magnetic induction on the top side of the magnet turns out to be exceptional,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and are able to act (depending on the form) even at a temperature of 230°C or more...
- In view of the ability of free molding and customization to specialized projects, NdFeB magnets can be modeled in a broad palette of geometric configurations, which amplifies use scope,
- Fundamental importance in high-tech industry – they find application in computer drives, brushless drives, diagnostic systems, as well as multitasking production systems.
- Thanks to efficiency per cm³, small magnets offer high operating force, in miniature format,
Cons
- Brittleness is one of their disadvantages. Upon strong impact they can break. We advise keeping them in a special holder, which not only secures them against impacts but also increases their durability
- We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we suggest our specialized [AH] magnets, which work effectively even at 230°C.
- When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation and corrosion.
- Limited possibility of making threads in the magnet and complicated shapes - preferred is cover - magnet mounting.
- Health risk to health – tiny shards of magnets are risky, when accidentally swallowed, which gains importance in the aspect of protecting the youngest. Furthermore, small components of these products are able to complicate diagnosis medical in case of swallowing.
- With large orders the cost of neodymium magnets is economically unviable,
Pull force analysis
Magnetic strength at its maximum – what contributes to it?
- using a plate made of high-permeability steel, serving as a ideal flux conductor
- with a cross-section of at least 10 mm
- with an ideally smooth touching surface
- under conditions of ideal adhesion (metal-to-metal)
- during pulling in a direction vertical to the plane
- at room temperature
Key elements affecting lifting force
- Distance – the presence of any layer (paint, tape, air) interrupts the magnetic circuit, which reduces power rapidly (even by 50% at 0.5 mm).
- Loading method – declared lifting capacity refers to detachment vertically. When applying parallel force, the magnet exhibits significantly lower power (often approx. 20-30% of maximum force).
- Wall thickness – thin material does not allow full use of the magnet. Part of the magnetic field passes through the material instead of generating force.
- Plate material – low-carbon steel gives the best results. Alloy admixtures reduce magnetic permeability and lifting capacity.
- Surface structure – the more even the surface, the better the adhesion and stronger the hold. Unevenness acts like micro-gaps.
- Temperature influence – hot environment weakens magnetic field. Exceeding the limit temperature can permanently damage the magnet.
Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Additionally, even a slight gap between the magnet’s surface and the plate lowers the holding force.
Warnings
Product not for children
Product intended for adults. Tiny parts pose a choking risk, leading to intestinal necrosis. Keep away from kids and pets.
Data carriers
Powerful magnetic fields can destroy records on credit cards, HDDs, and storage devices. Keep a distance of min. 10 cm.
Nickel allergy
Certain individuals have a contact allergy to nickel, which is the common plating for NdFeB magnets. Prolonged contact might lead to skin redness. It is best to use safety gloves.
Magnetic interference
Be aware: rare earth magnets generate a field that interferes with precision electronics. Keep a safe distance from your phone, device, and navigation systems.
Handling guide
Be careful. Neodymium magnets act from a long distance and snap with huge force, often quicker than you can move away.
Health Danger
Warning for patients: Strong magnetic fields affect medical devices. Keep minimum 30 cm distance or request help to handle the magnets.
Permanent damage
Avoid heat. NdFeB magnets are susceptible to temperature. If you need operation above 80°C, ask us about HT versions (H, SH, UH).
Do not drill into magnets
Fire hazard: Rare earth powder is explosive. Do not process magnets in home conditions as this may cause fire.
Shattering risk
Despite metallic appearance, neodymium is delicate and cannot withstand shocks. Avoid impacts, as the magnet may shatter into hazardous fragments.
Crushing force
Big blocks can break fingers instantly. Do not place your hand between two strong magnets.
