tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. Practically all magnesy on our website are available for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy very strong magnet? Holders with magnets in airtight and durable steel enclosure are ideally suited for use in challenging weather conditions, including during snow and rain check...

magnetic holders

Holders with magnets can be used to enhance production processes, exploring underwater areas, or searching for space rocks made of metal more...

Order is always shipped on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping in 2 days!

MW 55x25 / N38 - neodymium magnet

cylindrical magnet

catalog number 010081

GTIN: 5906301810803

5.0

diameter Ø

55 mm [±0,1 mm]

height

25 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

76.03 kg / 745.60 N

magnetic induction ~

416.97 mT / 4,170 Gs

max. temperature

≤ 80 °C

150.00 gross price (including VAT) / pcs +

121.95 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
121.95 ZŁ
150.00 ZŁ
price from 5 pcs
114.63 ZŁ
140.99 ZŁ
price from 19 pcs
107.32 ZŁ
132.00 ZŁ

Don't know what to choose?

Call us tel: +48 22 499 98 98 or contact us through form on the contact page. You can check the mass and the appearance of neodymium magnets in our magnetic calculator magnetic calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 55x25 / N38 ↑ axial

Characteristics: cylindrical magnet 55x25 / N38 ↑ axial
Properties
Values
catalog number
010081
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
55 mm [±0,1 mm]
height
25 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
76.03 kg / 745.60 N
magnetic induction ~ ?
416.97 mT / 4,170 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
445.47 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets min. MW 55x25 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which exceed traditional iron magnets. Thanks to their power, they are frequently employed in devices that need powerful holding. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet with the designation MW 55x25 / N38 and a magnetic lifting capacity of 76.03 kg has a weight of only 445.47 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the website for the current information as well as offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very practical in many applications, they can also pose certain dangers. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin and other surfaces, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are currently the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with other metals and then shaping and heat treating. Their amazing magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as silver, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.

Product suggestions

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Wide application in the industry of new technologies – are utilized in HDD drives, electric drive mechanisms, medical apparatus and various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets pose a threat, in case of ingestion, which is particularly important in the context of children's health. Additionally, small elements of these magnets can be problematic in medical diagnosis after entering the body.

Exercise Caution with Neodymium Magnets

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Magnets made of neodymium are particularly delicate, which leads to damage.

Magnets made of neodymium are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Neodymium magnets should not be around youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If joining of neodymium magnets is not controlled, then they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should hold them extremely firmly.

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98