MW 55x25 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010081
GTIN/EAN: 5906301810803
Diameter Ø
55 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
445.47 g
Magnetization Direction
↑ axial
Load capacity
92.25 kg / 904.94 N
Magnetic Induction
416.97 mT / 4170 Gs
Coating
[NiCuNi] Nickel
154.21 ZŁ with VAT / pcs + price for transport
125.37 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
alternatively let us know by means of
request form
our website.
Weight as well as appearance of magnetic components can be reviewed with our
modular calculator.
Order by 14:00 and we’ll ship today!
Physical properties - MW 55x25 / N38 - cylindrical magnet
Specification / characteristics - MW 55x25 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010081 |
| GTIN/EAN | 5906301810803 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 55 mm [±0,1 mm] |
| Height | 25 mm [±0,1 mm] |
| Weight | 445.47 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 92.25 kg / 904.94 N |
| Magnetic Induction ~ ? | 416.97 mT / 4170 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the magnet - technical parameters
Presented data constitute the direct effect of a mathematical calculation. Results are based on models for the class Nd2Fe14B. Real-world conditions might slightly differ. Please consider these calculations as a preliminary roadmap for designers.
Table 1: Static pull force (pull vs distance) - interaction chart
MW 55x25 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4169 Gs
416.9 mT
|
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
dangerous! |
| 1 mm |
4034 Gs
403.4 mT
|
86.37 kg / 190.41 lbs
86369.8 g / 847.3 N
|
dangerous! |
| 2 mm |
3894 Gs
389.4 mT
|
80.47 kg / 177.41 lbs
80469.7 g / 789.4 N
|
dangerous! |
| 3 mm |
3751 Gs
375.1 mT
|
74.67 kg / 164.62 lbs
74670.6 g / 732.5 N
|
dangerous! |
| 5 mm |
3461 Gs
346.1 mT
|
63.58 kg / 140.17 lbs
63580.6 g / 623.7 N
|
dangerous! |
| 10 mm |
2756 Gs
275.6 mT
|
40.32 kg / 88.89 lbs
40320.8 g / 395.5 N
|
dangerous! |
| 15 mm |
2140 Gs
214.0 mT
|
24.31 kg / 53.59 lbs
24308.3 g / 238.5 N
|
dangerous! |
| 20 mm |
1644 Gs
164.4 mT
|
14.34 kg / 31.61 lbs
14338.1 g / 140.7 N
|
dangerous! |
| 30 mm |
975 Gs
97.5 mT
|
5.05 kg / 11.12 lbs
5046.0 g / 49.5 N
|
strong |
| 50 mm |
388 Gs
38.8 mT
|
0.80 kg / 1.77 lbs
801.0 g / 7.9 N
|
weak grip |
Table 2: Slippage force (wall)
MW 55x25 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
18.45 kg / 40.68 lbs
18450.0 g / 181.0 N
|
| 1 mm | Stal (~0.2) |
17.27 kg / 38.08 lbs
17274.0 g / 169.5 N
|
| 2 mm | Stal (~0.2) |
16.09 kg / 35.48 lbs
16094.0 g / 157.9 N
|
| 3 mm | Stal (~0.2) |
14.93 kg / 32.92 lbs
14934.0 g / 146.5 N
|
| 5 mm | Stal (~0.2) |
12.72 kg / 28.03 lbs
12716.0 g / 124.7 N
|
| 10 mm | Stal (~0.2) |
8.06 kg / 17.78 lbs
8064.0 g / 79.1 N
|
| 15 mm | Stal (~0.2) |
4.86 kg / 10.72 lbs
4862.0 g / 47.7 N
|
| 20 mm | Stal (~0.2) |
2.87 kg / 6.32 lbs
2868.0 g / 28.1 N
|
| 30 mm | Stal (~0.2) |
1.01 kg / 2.23 lbs
1010.0 g / 9.9 N
|
| 50 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 55x25 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
27.68 kg / 61.01 lbs
27675.0 g / 271.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
18.45 kg / 40.68 lbs
18450.0 g / 181.0 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
9.23 kg / 20.34 lbs
9225.0 g / 90.5 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
46.13 kg / 101.69 lbs
46125.0 g / 452.5 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 55x25 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
3.08 kg / 6.78 lbs
3075.0 g / 30.2 N
|
| 1 mm |
|
7.69 kg / 16.95 lbs
7687.5 g / 75.4 N
|
| 2 mm |
|
15.37 kg / 33.90 lbs
15375.0 g / 150.8 N
|
| 3 mm |
|
23.06 kg / 50.84 lbs
23062.5 g / 226.2 N
|
| 5 mm |
|
38.44 kg / 84.74 lbs
38437.5 g / 377.1 N
|
| 10 mm |
|
76.88 kg / 169.48 lbs
76875.0 g / 754.1 N
|
| 11 mm |
|
84.56 kg / 186.43 lbs
84562.5 g / 829.6 N
|
| 12 mm |
|
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
Table 5: Thermal stability (material behavior) - power drop
MW 55x25 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
OK |
| 40 °C | -2.2% |
90.22 kg / 198.90 lbs
90220.5 g / 885.1 N
|
OK |
| 60 °C | -4.4% |
88.19 kg / 194.43 lbs
88191.0 g / 865.2 N
|
|
| 80 °C | -6.6% |
86.16 kg / 189.95 lbs
86161.5 g / 845.2 N
|
|
| 100 °C | -28.8% |
65.68 kg / 144.80 lbs
65682.0 g / 644.3 N
|
Table 6: Two magnets (attraction) - forces in the system
MW 55x25 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
254.60 kg / 561.30 lbs
5 431 Gs
|
38.19 kg / 84.20 lbs
38190 g / 374.6 N
|
N/A |
| 1 mm |
246.57 kg / 543.59 lbs
8 206 Gs
|
36.99 kg / 81.54 lbs
36985 g / 362.8 N
|
221.91 kg / 489.23 lbs
~0 Gs
|
| 2 mm |
238.37 kg / 525.52 lbs
8 068 Gs
|
35.76 kg / 78.83 lbs
35756 g / 350.8 N
|
214.54 kg / 472.97 lbs
~0 Gs
|
| 3 mm |
230.21 kg / 507.52 lbs
7 929 Gs
|
34.53 kg / 76.13 lbs
34531 g / 338.7 N
|
207.19 kg / 456.77 lbs
~0 Gs
|
| 5 mm |
214.04 kg / 471.88 lbs
7 645 Gs
|
32.11 kg / 70.78 lbs
32106 g / 315.0 N
|
192.64 kg / 424.69 lbs
~0 Gs
|
| 10 mm |
175.48 kg / 386.86 lbs
6 923 Gs
|
26.32 kg / 58.03 lbs
26322 g / 258.2 N
|
157.93 kg / 348.17 lbs
~0 Gs
|
| 20 mm |
111.28 kg / 245.33 lbs
5 513 Gs
|
16.69 kg / 36.80 lbs
16692 g / 163.8 N
|
100.15 kg / 220.80 lbs
~0 Gs
|
| 50 mm |
23.33 kg / 51.43 lbs
2 524 Gs
|
3.50 kg / 7.71 lbs
3499 g / 34.3 N
|
20.99 kg / 46.28 lbs
~0 Gs
|
| 60 mm |
13.93 kg / 30.70 lbs
1 950 Gs
|
2.09 kg / 4.61 lbs
2089 g / 20.5 N
|
12.53 kg / 27.63 lbs
~0 Gs
|
| 70 mm |
8.48 kg / 18.70 lbs
1 522 Gs
|
1.27 kg / 2.81 lbs
1272 g / 12.5 N
|
7.63 kg / 16.83 lbs
~0 Gs
|
| 80 mm |
5.29 kg / 11.66 lbs
1 202 Gs
|
0.79 kg / 1.75 lbs
793 g / 7.8 N
|
4.76 kg / 10.50 lbs
~0 Gs
|
| 90 mm |
3.38 kg / 7.45 lbs
961 Gs
|
0.51 kg / 1.12 lbs
507 g / 5.0 N
|
3.04 kg / 6.70 lbs
~0 Gs
|
| 100 mm |
2.21 kg / 4.87 lbs
777 Gs
|
0.33 kg / 0.73 lbs
332 g / 3.3 N
|
1.99 kg / 4.39 lbs
~0 Gs
|
Table 7: Hazards (implants) - warnings
MW 55x25 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 27.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 21.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 17.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 13.0 cm |
| Car key | 50 Gs (5.0 mT) | 12.0 cm |
| Payment card | 400 Gs (40.0 mT) | 5.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 4.5 cm |
Table 8: Dynamics (kinetic energy) - warning
MW 55x25 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
18.05 km/h
(5.01 m/s)
|
5.60 J | |
| 30 mm |
25.98 km/h
(7.22 m/s)
|
11.60 J | |
| 50 mm |
32.63 km/h
(9.06 m/s)
|
18.30 J | |
| 100 mm |
45.90 km/h
(12.75 m/s)
|
36.21 J |
Table 9: Corrosion resistance
MW 55x25 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 55x25 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 101 075 Mx | 1010.7 µWb |
| Pc Coefficient | 0.55 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MW 55x25 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 92.25 kg | Standard |
| Water (riverbed) |
105.63 kg
(+13.38 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Warning: On a vertical wall, the magnet retains just ~20% of its perpendicular strength.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) severely weakens the holding force.
3. Heat tolerance
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.55
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more offers
Strengths as well as weaknesses of Nd2Fe14B magnets.
Advantages
- Their magnetic field is maintained, and after around ten years it decreases only by ~1% (theoretically),
- Magnets perfectly defend themselves against loss of magnetization caused by foreign field sources,
- Thanks to the reflective finish, the plating of nickel, gold, or silver gives an elegant appearance,
- Neodymium magnets ensure maximum magnetic induction on a small area, which ensures high operational effectiveness,
- Thanks to resistance to high temperature, they are able to function (depending on the shape) even at temperatures up to 230°C and higher...
- Considering the ability of free forming and adaptation to individualized needs, NdFeB magnets can be created in a broad palette of shapes and sizes, which increases their versatility,
- Versatile presence in electronics industry – they find application in magnetic memories, electric drive systems, medical equipment, also technologically advanced constructions.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Cons
- They are fragile upon too strong impacts. To avoid cracks, it is worth protecting magnets in special housings. Such protection not only protects the magnet but also increases its resistance to damage
- Neodymium magnets lose their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Magnets exposed to a humid environment can corrode. Therefore while using outdoors, we advise using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
- We suggest casing - magnetic mechanism, due to difficulties in realizing nuts inside the magnet and complicated shapes.
- Possible danger to health – tiny shards of magnets are risky, when accidentally swallowed, which is particularly important in the aspect of protecting the youngest. Furthermore, small components of these magnets are able to be problematic in diagnostics medical after entering the body.
- High unit price – neodymium magnets cost more than other types of magnets (e.g. ferrite), which can limit application in large quantities
Pull force analysis
Best holding force of the magnet in ideal parameters – what it depends on?
- on a plate made of mild steel, optimally conducting the magnetic field
- whose transverse dimension is min. 10 mm
- with an ground contact surface
- under conditions of ideal adhesion (metal-to-metal)
- under axial application of breakaway force (90-degree angle)
- in stable room temperature
Magnet lifting force in use – key factors
- Distance – the presence of foreign body (paint, tape, air) interrupts the magnetic circuit, which lowers capacity rapidly (even by 50% at 0.5 mm).
- Angle of force application – maximum parameter is available only during pulling at a 90° angle. The resistance to sliding of the magnet along the surface is usually several times lower (approx. 1/5 of the lifting capacity).
- Plate thickness – insufficiently thick sheet does not accept the full field, causing part of the power to be wasted into the air.
- Metal type – different alloys attracts identically. Alloy additives weaken the attraction effect.
- Smoothness – full contact is obtained only on polished steel. Any scratches and bumps reduce the real contact area, weakening the magnet.
- Temperature influence – high temperature reduces pulling force. Too high temperature can permanently demagnetize the magnet.
Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under shearing force the load capacity is reduced by as much as 75%. In addition, even a slight gap between the magnet’s surface and the plate reduces the lifting capacity.
Safety rules for work with neodymium magnets
Compass and GPS
GPS units and mobile phones are extremely susceptible to magnetic fields. Direct contact with a strong magnet can decalibrate the internal compass in your phone.
Electronic devices
Do not bring magnets near a wallet, computer, or TV. The magnetic field can permanently damage these devices and wipe information from cards.
Medical interference
Life threat: Strong magnets can deactivate heart devices and defibrillators. Stay away if you have electronic implants.
Sensitization to coating
A percentage of the population experience a contact allergy to Ni, which is the standard coating for neodymium magnets. Prolonged contact can result in skin redness. It is best to use protective gloves.
Finger safety
Risk of injury: The attraction force is so immense that it can cause hematomas, pinching, and broken bones. Protective gloves are recommended.
Shattering risk
NdFeB magnets are sintered ceramics, which means they are fragile like glass. Collision of two magnets leads to them shattering into shards.
Immense force
Before starting, read the rules. Uncontrolled attraction can destroy the magnet or hurt your hand. Be predictive.
Choking Hazard
Neodymium magnets are not toys. Swallowing several magnets may result in them connecting inside the digestive tract, which poses a critical condition and requires urgent medical intervention.
Permanent damage
Standard neodymium magnets (N-type) lose magnetization when the temperature goes above 80°C. The loss of strength is permanent.
Flammability
Dust created during machining of magnets is combustible. Avoid drilling into magnets unless you are an expert.
