MW 55x25 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010081
GTIN: 5906301810803
Diameter Ø [±0,1 mm]
55 mm
Height [±0,1 mm]
25 mm
Weight
445.47 g
Magnetization Direction
↑ axial
Load capacity
76.03 kg / 745.6 N
Magnetic Induction
416.97 mT
Coating
[NiCuNi] nickel
154.21 ZŁ with VAT / pcs + price for transport
125.37 ZŁ net + 23% VAT / pcs
121.95 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Can't decide what to choose?
Give us a call
+48 22 499 98 98
alternatively send us a note through
contact form
the contact form page.
Weight along with appearance of magnetic components can be checked on our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
MW 55x25 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of gold to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as silver, to shield them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetic energy, neodymium magnets have these key benefits:
- They retain their magnetic properties for nearly 10 years – the drop is just ~1% (according to analyses),
- They show superior resistance to demagnetization from external field exposure,
- By applying a bright layer of nickel, the element gains a modern look,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
- The ability for custom shaping as well as adaptation to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
- Important function in cutting-edge sectors – they serve a purpose in data storage devices, electromechanical systems, clinical machines along with other advanced devices,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and reinforces its overall robustness,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to moisture can rust. Therefore, for outdoor applications, it's best to use waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
- Potential hazard linked to microscopic shards may arise, especially if swallowed, which is significant in the family environments. Additionally, small elements from these products may disrupt scanning if inside the body,
- Due to the price of neodymium, their cost is relatively high,
Breakaway strength of the magnet in ideal conditions – what affects it?
The given pulling force of the magnet means the maximum force, assessed under optimal conditions, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- with vertical force applied
- in normal thermal conditions
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet and the plate reduces the holding force.
Caution with Neodymium Magnets
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or a fracture.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Magnets are not toys, children should not play with them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Magnets made of neodymium are delicate and can easily break and shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Pay attention!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.