tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. All "magnets" in our store are in stock for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnets for searching F200 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in airtight, solid steel casing are ideally suited for use in variable and difficult climate conditions, including in the rain and snow more information...

magnetic holders

Holders with magnets can be applied to enhance manufacturing, exploring underwater areas, or searching for meteors from gold more information...

Enjoy delivery of your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 55x25 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010081

GTIN: 5906301810803

5

Diameter Ø [±0,1 mm]

55 mm

Height [±0,1 mm]

25 mm

Weight

445.47 g

Magnetization Direction

↑ axial

Load capacity

76.03 kg / 745.6 N

Magnetic Induction

416.97 mT

Coating

[NiCuNi] nickel

154.21 with VAT / pcs + price for transport

125.37 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
125.37 ZŁ
154.21 ZŁ
price from 5 pcs
117.85 ZŁ
144.95 ZŁ
price from 20 pcs
110.33 ZŁ
135.70 ZŁ

Looking for a better price?

Call us now +48 888 99 98 98 if you prefer send us a note using contact form the contact form page.
Force as well as appearance of magnetic components can be analyzed using our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

MW 55x25 / N38 - cylindrical magnet

Specification/characteristics MW 55x25 / N38 - cylindrical magnet
properties
values
Cat. no.
010081
GTIN
5906301810803
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
55 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
445.47 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
76.03 kg / 745.6 N
Magnetic Induction ~ ?
416.97 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 55x25 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed ordinary iron magnets. Thanks to their strength, they are frequently employed in devices that need powerful holding. The typical temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet named MW 55x25 / N38 with a magnetic lifting capacity of 76.03 kg has a weight of only 445.47 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the latest information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in many applications, they can also constitute certain risk. Due to their strong magnetic power, they can pull metallic objects with significant force, which can lead to damaging skin or other surfaces, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with other metals and then shaping and heat treating. Their amazing magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as nickel, to shield them from environmental factors and prolong their durability. Temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical magnet N50 and N52 is a strong and extremely powerful metal object designed as a cylinder, that offers strong holding power and universal application. Good price, 24h delivery, ruggedness and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetic energy, neodymium magnets have these key benefits:

  • They do not lose their power around ten years – the reduction of power is only ~1% (based on measurements),
  • They remain magnetized despite exposure to magnetic surroundings,
  • The use of a polished nickel surface provides a eye-catching finish,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for precise shaping and customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Wide application in modern technologies – they are used in data storage devices, electric drives, diagnostic apparatus as well as other advanced devices,
  • Thanks to their power density, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time strengthens its overall robustness,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a external casing is recommended,
  • Potential hazard related to magnet particles may arise, when consumed by mistake, which is crucial in the context of child safety. Moreover, miniature parts from these magnets can hinder health screening if inside the body,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum magnetic pulling forcewhat it depends on?

The given pulling force of the magnet represents the maximum force, measured in the best circumstances, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Determinants of practical lifting force of a magnet

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, however under attempts to slide the magnet the holding force is lower. Moreover, even a minimal clearance {between} the magnet and the plate decreases the holding force.

Handle Neodymium Magnets with Caution

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will bounce and also touch together within a distance of several to around 10 cm from each other.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Neodymium magnets should not be around youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnetic are especially fragile, resulting in damage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Pay attention!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98