MPL 30x20x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020143
GTIN/EAN: 5906301811497
length
30 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
22.5 g
Magnetization Direction
↑ axial
Load capacity
8.86 kg / 86.90 N
Magnetic Induction
220.03 mT / 2200 Gs
Coating
[NiCuNi] Nickel
9.10 ZŁ with VAT / pcs + price for transport
7.40 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
otherwise let us know through
our online form
our website.
Parameters along with appearance of magnets can be reviewed using our
force calculator.
Same-day shipping for orders placed before 14:00.
Technical of the product - MPL 30x20x5 / N38 - lamellar magnet
Specification / characteristics - MPL 30x20x5 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020143 |
| GTIN/EAN | 5906301811497 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 30 mm [±0,1 mm] |
| Width | 20 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 22.5 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 8.86 kg / 86.90 N |
| Magnetic Induction ~ ? | 220.03 mT / 2200 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the product - report
The following values are the result of a physical calculation. Values were calculated on algorithms for the class Nd2Fe14B. Real-world conditions may differ from theoretical values. Treat these calculations as a preliminary roadmap during assembly planning.
Table 1: Static force (pull vs gap) - interaction chart
MPL 30x20x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2200 Gs
220.0 mT
|
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
medium risk |
| 1 mm |
2092 Gs
209.2 mT
|
8.01 kg / 17.67 lbs
8013.9 g / 78.6 N
|
medium risk |
| 2 mm |
1961 Gs
196.1 mT
|
7.04 kg / 15.53 lbs
7042.1 g / 69.1 N
|
medium risk |
| 3 mm |
1817 Gs
181.7 mT
|
6.04 kg / 13.32 lbs
6041.8 g / 59.3 N
|
medium risk |
| 5 mm |
1516 Gs
151.6 mT
|
4.21 kg / 9.28 lbs
4209.6 g / 41.3 N
|
medium risk |
| 10 mm |
892 Gs
89.2 mT
|
1.46 kg / 3.21 lbs
1456.2 g / 14.3 N
|
safe |
| 15 mm |
519 Gs
51.9 mT
|
0.49 kg / 1.09 lbs
492.4 g / 4.8 N
|
safe |
| 20 mm |
313 Gs
31.3 mT
|
0.18 kg / 0.40 lbs
179.8 g / 1.8 N
|
safe |
| 30 mm |
132 Gs
13.2 mT
|
0.03 kg / 0.07 lbs
31.9 g / 0.3 N
|
safe |
| 50 mm |
37 Gs
3.7 mT
|
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
|
safe |
Table 2: Sliding hold (vertical surface)
MPL 30x20x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.77 kg / 3.91 lbs
1772.0 g / 17.4 N
|
| 1 mm | Stal (~0.2) |
1.60 kg / 3.53 lbs
1602.0 g / 15.7 N
|
| 2 mm | Stal (~0.2) |
1.41 kg / 3.10 lbs
1408.0 g / 13.8 N
|
| 3 mm | Stal (~0.2) |
1.21 kg / 2.66 lbs
1208.0 g / 11.9 N
|
| 5 mm | Stal (~0.2) |
0.84 kg / 1.86 lbs
842.0 g / 8.3 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 0.64 lbs
292.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
98.0 g / 1.0 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MPL 30x20x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
2.66 kg / 5.86 lbs
2658.0 g / 26.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.77 kg / 3.91 lbs
1772.0 g / 17.4 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MPL 30x20x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| 1 mm |
|
2.22 kg / 4.88 lbs
2215.0 g / 21.7 N
|
| 2 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 3 mm |
|
6.65 kg / 14.65 lbs
6645.0 g / 65.2 N
|
| 5 mm |
|
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
| 10 mm |
|
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
| 11 mm |
|
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
| 12 mm |
|
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
Table 5: Working in heat (material behavior) - thermal limit
MPL 30x20x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
OK |
| 40 °C | -2.2% |
8.67 kg / 19.10 lbs
8665.1 g / 85.0 N
|
OK |
| 60 °C | -4.4% |
8.47 kg / 18.67 lbs
8470.2 g / 83.1 N
|
|
| 80 °C | -6.6% |
8.28 kg / 18.24 lbs
8275.2 g / 81.2 N
|
|
| 100 °C | -28.8% |
6.31 kg / 13.91 lbs
6308.3 g / 61.9 N
|
Table 6: Two magnets (attraction) - field collision
MPL 30x20x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.90 kg / 39.47 lbs
3 715 Gs
|
2.69 kg / 5.92 lbs
2685 g / 26.3 N
|
N/A |
| 1 mm |
17.10 kg / 37.69 lbs
4 300 Gs
|
2.56 kg / 5.65 lbs
2565 g / 25.2 N
|
15.39 kg / 33.92 lbs
~0 Gs
|
| 2 mm |
16.19 kg / 35.70 lbs
4 184 Gs
|
2.43 kg / 5.35 lbs
2429 g / 23.8 N
|
14.57 kg / 32.13 lbs
~0 Gs
|
| 3 mm |
15.23 kg / 33.57 lbs
4 058 Gs
|
2.28 kg / 5.04 lbs
2284 g / 22.4 N
|
13.71 kg / 30.22 lbs
~0 Gs
|
| 5 mm |
13.22 kg / 29.14 lbs
3 780 Gs
|
1.98 kg / 4.37 lbs
1982 g / 19.4 N
|
11.89 kg / 26.22 lbs
~0 Gs
|
| 10 mm |
8.51 kg / 18.75 lbs
3 033 Gs
|
1.28 kg / 2.81 lbs
1276 g / 12.5 N
|
7.66 kg / 16.88 lbs
~0 Gs
|
| 20 mm |
2.94 kg / 6.49 lbs
1 784 Gs
|
0.44 kg / 0.97 lbs
441 g / 4.3 N
|
2.65 kg / 5.84 lbs
~0 Gs
|
| 50 mm |
0.15 kg / 0.32 lbs
398 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 60 mm |
0.06 kg / 0.14 lbs
264 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.07 lbs
183 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.04 lbs
131 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
97 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
73 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - warnings
MPL 30x20x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 10.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 8.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 6.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 5.0 cm |
| Remote | 50 Gs (5.0 mT) | 4.5 cm |
| Payment card | 400 Gs (40.0 mT) | 2.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Dynamics (kinetic energy) - warning
MPL 30x20x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
21.97 km/h
(6.10 m/s)
|
0.42 J | |
| 30 mm |
34.74 km/h
(9.65 m/s)
|
1.05 J | |
| 50 mm |
44.76 km/h
(12.43 m/s)
|
1.74 J | |
| 100 mm |
63.29 km/h
(17.58 m/s)
|
3.48 J |
Table 9: Corrosion resistance
MPL 30x20x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 30x20x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 14 969 Mx | 149.7 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 30x20x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 8.86 kg | Standard |
| Water (riverbed) |
10.14 kg
(+1.28 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical surface, the magnet holds merely approx. 20-30% of its max power.
2. Steel thickness impact
*Thin steel (e.g. computer case) severely limits the holding force.
3. Power loss vs temp
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more products
Advantages and disadvantages of rare earth magnets.
Advantages
- They virtually do not lose power, because even after ten years the performance loss is only ~1% (based on calculations),
- They maintain their magnetic properties even under external field action,
- In other words, due to the reflective surface of gold, the element becomes visually attractive,
- The surface of neodymium magnets generates a intense magnetic field – this is a distinguishing feature,
- Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
- Possibility of precise shaping and adjusting to precise needs,
- Universal use in high-tech industry – they serve a role in computer drives, electric drive systems, precision medical tools, and technologically advanced constructions.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Weaknesses
- Susceptibility to cracking is one of their disadvantages. Upon strong impact they can break. We recommend keeping them in a strong case, which not only protects them against impacts but also increases their durability
- We warn that neodymium magnets can reduce their strength at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- When exposed to humidity, magnets usually rust. To use them in conditions outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation and corrosion.
- Due to limitations in creating nuts and complicated shapes in magnets, we propose using cover - magnetic holder.
- Possible danger to health – tiny shards of magnets can be dangerous, when accidentally swallowed, which is particularly important in the context of child safety. Additionally, tiny parts of these products can be problematic in diagnostics medical in case of swallowing.
- With large orders the cost of neodymium magnets is economically unviable,
Pull force analysis
Maximum lifting force for a neodymium magnet – what contributes to it?
- using a base made of high-permeability steel, acting as a circuit closing element
- whose thickness reaches at least 10 mm
- characterized by smoothness
- without any insulating layer between the magnet and steel
- for force applied at a right angle (pull-off, not shear)
- at ambient temperature room level
Impact of factors on magnetic holding capacity in practice
- Air gap (between the magnet and the plate), since even a very small distance (e.g. 0.5 mm) results in a drastic drop in force by up to 50% (this also applies to varnish, rust or debris).
- Load vector – highest force is reached only during pulling at a 90° angle. The force required to slide of the magnet along the surface is standardly several times lower (approx. 1/5 of the lifting capacity).
- Substrate thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet limits the attraction force (the magnet "punches through" it).
- Material composition – not every steel reacts the same. High carbon content worsen the attraction effect.
- Smoothness – ideal contact is obtained only on smooth steel. Rough texture create air cushions, weakening the magnet.
- Thermal factor – hot environment reduces pulling force. Exceeding the limit temperature can permanently damage the magnet.
Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the lifting capacity is smaller. Additionally, even a small distance between the magnet and the plate lowers the holding force.
Safe handling of NdFeB magnets
Warning for allergy sufferers
Certain individuals suffer from a contact allergy to nickel, which is the common plating for neodymium magnets. Prolonged contact may cause a rash. We recommend use protective gloves.
Product not for children
Strictly store magnets away from children. Ingestion danger is significant, and the consequences of magnets connecting inside the body are tragic.
Magnet fragility
NdFeB magnets are sintered ceramics, meaning they are very brittle. Collision of two magnets leads to them shattering into small pieces.
Phone sensors
GPS units and smartphones are extremely sensitive to magnetism. Direct contact with a strong magnet can decalibrate the internal compass in your phone.
Heat sensitivity
Do not overheat. NdFeB magnets are sensitive to temperature. If you need operation above 80°C, inquire about special high-temperature series (H, SH, UH).
Physical harm
Danger of trauma: The pulling power is so immense that it can result in blood blisters, crushing, and broken bones. Use thick gloves.
Fire risk
Mechanical processing of neodymium magnets poses a fire risk. Neodymium dust oxidizes rapidly with oxygen and is hard to extinguish.
Threat to electronics
Powerful magnetic fields can erase data on payment cards, hard drives, and storage devices. Stay away of min. 10 cm.
Conscious usage
Exercise caution. Neodymium magnets attract from a long distance and snap with huge force, often quicker than you can move away.
Implant safety
For implant holders: Strong magnetic fields affect electronics. Keep minimum 30 cm distance or ask another person to handle the magnets.
