tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" on our website are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in solid and airtight steel enclosure are ideally suited for use in difficult, demanding weather, including snow and rain read...

magnets with holders

Magnetic holders can be used to improve production processes, exploring underwater areas, or searching for meteors made of ore read...

Enjoy delivery of your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 50x20 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010080

GTIN: 5906301810797

0

Diameter Ø [±0,1 mm]

50 mm

Height [±0,1 mm]

20 mm

Weight

294.52 g

Magnetization Direction

↑ axial

Load capacity

55.29 kg / 542.21 N

Magnetic Induction

387.23 mT

Coating

[NiCuNi] nickel

106.96 with VAT / pcs + price for transport

86.96 ZŁ net + 23% VAT / pcs

85.37 ZŁ net was the lowest price in the last 30 days

bulk discounts:

Need more?

price from 1 pcs
86.96 ZŁ
106.96 ZŁ
price from 10 pcs
81.74 ZŁ
100.54 ZŁ
price from 30 pcs
75.66 ZŁ
93.06 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 888 99 98 98 if you prefer let us know by means of inquiry form the contact page.
Lifting power as well as shape of magnetic components can be verified using our online calculation tool.

Same-day shipping for orders placed before 14:00.

MW 50x20 / N38 - cylindrical magnet

Specification/characteristics MW 50x20 / N38 - cylindrical magnet
properties
values
Cat. no.
010080
GTIN
5906301810797
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
50 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
294.52 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
55.29 kg / 542.21 N
Magnetic Induction ~ ?
387.23 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 50x20 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which outperform ordinary iron magnets. Thanks to their strength, they are often employed in products that need powerful holding. The typical temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet named MW 50x20 / N38 and a magnetic lifting capacity of 55.29 kg has a weight of only 294.52 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the site for the current information as well as offers, and before visiting, please call.
Although, cylindrical neodymium magnets are very useful in various applications, they can also pose certain risk. Due to their strong magnetic power, they can pull metallic objects with great force, which can lead to crushing skin or other surfaces, especially be careful with fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with other metals and then shaping and thermal processing. Their unmatched magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as gold, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet in classes N50 and N52 is a strong and powerful metallic component in the form of a cylinder, providing high force and universal applicability. Competitive price, availability, durability and broad range of uses.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional field intensity, neodymium magnets offer the following advantages:

  • They retain their magnetic properties for nearly 10 years – the loss is just ~1% (according to analyses),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • In other words, due to the shiny nickel coating, the magnet obtains an professional appearance,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
  • Important function in cutting-edge sectors – they are used in HDDs, electric motors, diagnostic apparatus as well as high-tech tools,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of rare earth magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and reinforces its overall durability,
  • They lose magnetic force at extreme temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can corrode. Therefore, for outdoor applications, we advise waterproof types made of plastic,
  • Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
  • Possible threat related to magnet particles may arise, when consumed by mistake, which is significant in the protection of children. It should also be noted that miniature parts from these magnets can disrupt scanning when ingested,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given strength of the magnet represents the optimal strength, calculated under optimal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

Lifting capacity in real conditions – factors

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the holding force.

Handle Neodymium Magnets with Caution

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will bounce and clash together within a distance of several to around 10 cm from each other.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

  Neodymium magnets should not be around children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Magnets made of neodymium are particularly fragile, resulting in damage.

Magnets made of neodymium are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Safety rules!

To show why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98