SM 25x225 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130292
GTIN: 5906301812852
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
225 mm
Weight
0.01 g
615.00 ZŁ with VAT / pcs + price for transport
500.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Give us a call
+48 22 499 98 98
otherwise get in touch by means of
contact form
through our site.
Parameters as well as shape of magnets can be tested on our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 25x225 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They retain their full power for nearly ten years – the loss is just ~1% (in theory),
- They protect against demagnetization induced by surrounding electromagnetic environments effectively,
- In other words, due to the glossy gold coating, the magnet obtains an aesthetic appearance,
- They possess strong magnetic force measurable at the magnet’s surface,
- Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
- Wide application in modern technologies – they serve a purpose in computer drives, electric drives, healthcare devices and technologically developed systems,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,
Disadvantages of rare earth magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time reinforces its overall robustness,
- They lose power at extreme temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a humid environment. If exposed to rain, we recommend using sealed magnets, such as those made of non-metallic materials,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
- Safety concern due to small fragments may arise, in case of ingestion, which is significant in the health of young users. Furthermore, miniature parts from these products have the potential to disrupt scanning after being swallowed,
- Due to expensive raw materials, their cost is considerably higher,
Maximum lifting force for a neodymium magnet – what affects it?
The given strength of the magnet corresponds to the optimal strength, assessed under optimal conditions, namely:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a refined outer layer
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Magnet lifting force in use – key factors
The lifting capacity of a magnet is influenced by in practice key elements, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.
Handle Neodymium Magnets with Caution
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets should not be around children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets are known for their fragility, which can cause them to become damaged.
Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
If have a finger between or on the path of attracting magnets, there may be a serious cut or even a fracture.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Safety rules!
So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
