e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. Practically all "magnets" on our website are available for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in airtight and durable steel casing are perfect for use in difficult, demanding climate conditions, including during snow and rain read...

magnetic holders

Magnetic holders can be used to facilitate production processes, underwater exploration, or finding space rocks from gold read...

Enjoy shipping of your order if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x225 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130292

GTIN: 5906301812852

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

225 mm

Weight

0.01 g

615.00 with VAT / pcs + price for transport

500.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
500.00 ZŁ
615.00 ZŁ
price from 5 pcs
475.00 ZŁ
584.25 ZŁ
price from 10 pcs
450.00 ZŁ
553.50 ZŁ

Looking for a better price?

Call us +48 22 499 98 98 otherwise send us a note by means of contact form through our site.
Specifications and appearance of magnetic components can be checked using our modular calculator.

Same-day processing for orders placed before 14:00.

SM 25x225 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x225 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130292
GTIN
5906301812852
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, placed in a casing made of stainless steel usually AISI304. As a result, it is possible to precisely segregate ferromagnetic particles from the mixture. An important element of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be collected. The thickness of the magnet and its structure's pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food sector to clear metallic contaminants, including iron fragments or iron dust. Our rods are made from acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, often called cylindrical magnets, find application in metal separation, food production as well as waste processing. They help in eliminating iron dust during the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Usually it is believed that the stronger the magnet, the better. Nevertheless, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines will be short. By contrast, in the case of a thicker magnet, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, usually stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, AISI 316 steel is recommended due to its outstanding anti-corrosion properties.
Magnetic bars are characterized by their unique configuration of poles and their capability to attract magnetic substances directly onto their surface, as opposed to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it is recommended cleaning after each use, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and weaken. Magnetic field measurements should be carried out every two years. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable holding force, neodymium magnets have these key benefits:

  • They do not lose their power around ten years – the decrease of lifting capacity is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is notable,
  • In other words, due to the shiny nickel coating, the magnet obtains an professional appearance,
  • Magnetic induction on the surface of these magnets is notably high,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for accurate shaping as well as customization to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Important function in modern technologies – they are used in data storage devices, electric motors, clinical machines as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in compact constructions

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment – during outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • Limited ability to create threads in the magnet – the use of a housing is recommended,
  • Possible threat linked to microscopic shards may arise, if ingested accidentally, which is crucial in the context of child safety. It should also be noted that tiny components from these magnets can disrupt scanning after being swallowed,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Magnetic strength at its maximum – what contributes to it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined under optimal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. Moreover, even a slight gap {between} the magnet and the plate reduces the load capacity.

Handle Neodymium Magnets Carefully

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets jump and also touch each other mutually within a distance of several to around 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 Maintain neodymium magnets far from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnetic are noted for being fragile, which can cause them to shatter.

Neodymium magnetic are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Pay attention!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98