SM 25x225 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130292
GTIN: 5906301812852
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
225 mm
Weight
0.01 g
615.00 ZŁ with VAT / pcs + price for transport
500.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have problems deciding?
Call us
+48 888 99 98 98
alternatively send us a note using
our online form
the contact page.
Weight and appearance of a neodymium magnet can be tested using our
online calculation tool.
Order by 14:00 and we’ll ship today!
SM 25x225 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their strong holding force, neodymium magnets have these key benefits:
- They have stable power, and over nearly 10 years their attraction force decreases symbolically – ~1% (in testing),
- They protect against demagnetization induced by surrounding magnetic fields effectively,
- In other words, due to the metallic nickel coating, the magnet obtains an stylish appearance,
- They have extremely strong magnetic induction on the surface of the magnet,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their application range,
- Important function in new technology industries – they are used in HDDs, electromechanical systems, clinical machines along with high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of rare earth magnets:
- They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall resistance,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
- Limited ability to create complex details in the magnet – the use of a external casing is recommended,
- Health risk from tiny pieces may arise, in case of ingestion, which is notable in the health of young users. Additionally, small elements from these magnets might disrupt scanning if inside the body,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Optimal lifting capacity of a neodymium magnet – what it depends on?
The given strength of the magnet corresponds to the optimal strength, calculated in the best circumstances, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a refined outer layer
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Lifting capacity in practice – influencing factors
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the holding force is lower. Additionally, even a small distance {between} the magnet and the plate reduces the holding force.
Handle with Care: Neodymium Magnets
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be in the vicinity youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a significant pressure or a fracture.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are extremely fragile, they easily crack as well as can become damaged.
Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Safety precautions!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
