tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. All magnesy neodymowe on our website are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnets for searching F200 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in difficult weather conditions, including during snow and rain more information...

magnetic holders

Holders with magnets can be used to facilitate production, exploring underwater areas, or locating meteors from gold more...

Enjoy delivery of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x225 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130292

GTIN: 5906301812852

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

225 mm

Weight

0.01 g

615.00 with VAT / pcs + price for transport

500.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
500.00 ZŁ
615.00 ZŁ
price from 5 pcs
475.00 ZŁ
584.25 ZŁ
price from 10 pcs
450.00 ZŁ
553.50 ZŁ

Hunting for a discount?

Call us +48 22 499 98 98 otherwise get in touch through contact form the contact section.
Specifications and appearance of a magnet can be reviewed on our online calculation tool.

Order by 14:00 and we’ll ship today!

SM 25x225 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x225 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130292
GTIN
5906301812852
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are placed in a casing made of stainless steel mostly AISI304. Due to this, it is possible to precisely remove ferromagnetic particles from the mixture. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are used to extract ferromagnetic elements. If the cans are ferromagnetic, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in the food sector to clear metallic contaminants, including iron fragments or iron dust. Our rollers are made from acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, often called cylindrical magnets, find application in metal separation, food production as well as recycling. They help in eliminating iron dust during the process of separating metals from other wastes.
Our magnetic rollers consist of a neodymium magnet anchored in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the greater the magnet's power, the more efficient it is. However, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines are short. Otherwise, in the case of a thicker magnet, the force lines will be extended and reach further.
For making the casings of magnetic separators - rollers, frequently stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, type AISI 316 steel is highly recommended due to its outstanding corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other devices that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, it is recommended regularly cleaning them from contaminants, avoiding high temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out once every 24 months. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong power, neodymium magnets have these key benefits:

  • They have constant strength, and over around ten years their performance decreases symbolically – ~1% (in testing),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Thanks to the polished finish and gold coating, they have an visually attractive appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • With the right combination of magnetic alloys, they reach significant thermal stability, enabling operation at or above 230°C (depending on the design),
  • With the option for fine forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Important function in new technology industries – they find application in HDDs, electromechanical systems, healthcare devices along with sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them ideal in small systems

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to mechanical hits, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall robustness,
  • They lose field intensity at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
  • Possible threat from tiny pieces may arise, especially if swallowed, which is crucial in the health of young users. Furthermore, tiny components from these assemblies may disrupt scanning after being swallowed,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum lifting force for a neodymium magnet – what it depends on?

The given lifting capacity of the magnet represents the maximum lifting force, measured in a perfect environment, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Impact of factors on magnetic holding capacity in practice

In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnetic are known for being fragile, which can cause them to shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets are not toys, youngest should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or crumble with uncontrolled connecting to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very strongly.

Exercise caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98