e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. All "neodymium magnets" in our store are available for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F400 GOLD

Where to buy strong neodymium magnet? Holders with magnets in solid and airtight steel casing are ideally suited for use in difficult climate conditions, including snow and rain see more...

magnetic holders

Magnetic holders can be used to facilitate production processes, underwater exploration, or finding meteorites made of ore see more...

We promise to ship your order on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x225 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130292

GTIN: 5906301812852

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

225 mm

Weight

0.01 g

615.00 with VAT / pcs + price for transport

500.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
500.00 ZŁ
615.00 ZŁ
price from 5 pcs
475.00 ZŁ
584.25 ZŁ
price from 10 pcs
450.00 ZŁ
553.50 ZŁ

Not sure about your choice?

Pick up the phone and ask +48 22 499 98 98 alternatively contact us using form through our site.
Weight along with form of magnetic components can be analyzed on our force calculator.

Orders submitted before 14:00 will be dispatched today!

SM 25x225 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x225 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130292
GTIN
5906301812852
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. Due to this, it is possible to effectively segregate ferromagnetic particles from the mixture. A key aspect of its operation is the repulsion of magnetic poles N and S, which causes magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food sector to clear metallic contaminants, for example iron fragments or iron dust. Our rollers are built from acid-resistant steel, EN 1.4301, suitable for contact with food.
Magnetic rollers, often called magnetic separators, find application in metal separation, food production as well as recycling. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets embedded in a tube of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the greater the magnet's power, the more efficient it is. Nevertheless, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines will be more compressed. By contrast, when the magnet is thick, the force lines will be longer and reach further.
For creating the casings of magnetic separators - rollers, most often stainless steel is utilized, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel exhibits the best resistance due to its excellent anti-corrosion properties.
Magnetic rollers are characterized by their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out every two years. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They have unchanged lifting capacity, and over around ten years their performance decreases symbolically – ~1% (in testing),
  • They protect against demagnetization induced by surrounding electromagnetic environments effectively,
  • Because of the brilliant layer of gold, the component looks aesthetically refined,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for precise shaping and adjustment to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Key role in modern technologies – they are utilized in HDDs, electric drives, diagnostic apparatus and sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in small systems

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall resistance,
  • They lose field intensity at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment. For outdoor use, we recommend using encapsulated magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
  • Possible threat related to magnet particles may arise, in case of ingestion, which is notable in the protection of children. Additionally, tiny components from these assemblies have the potential to disrupt scanning if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given strength of the magnet means the optimal strength, assessed in ideal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • under standard ambient temperature

Practical lifting capacity: influencing factors

In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate reduces the lifting capacity.

Handle Neodymium Magnets with Caution

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnetic are known for being fragile, which can cause them to shatter.

Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will jump and also touch together within a radius of several to around 10 cm from each other.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Exercise caution!

To show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98