SM 25x225 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130292
GTIN: 5906301812852
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
225 mm
Weight
0.01 g
615.00 ZŁ with VAT / pcs + price for transport
500.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have doubts?
Call us
+48 22 499 98 98
otherwise send us a note via
inquiry form
the contact form page.
Specifications and form of neodymium magnets can be reviewed using our
magnetic calculator.
Same-day processing for orders placed before 14:00.
SM 25x225 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetism, neodymium magnets have these key benefits:
- They retain their full power for around ten years – the drop is just ~1% (based on simulations),
- Their ability to resist magnetic interference from external fields is notable,
- In other words, due to the glossy nickel coating, the magnet obtains an aesthetic appearance,
- They have extremely strong magnetic induction on the surface of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- The ability for custom shaping as well as adjustment to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Key role in cutting-edge sectors – they are used in data storage devices, electromechanical systems, healthcare devices and technologically developed systems,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of magnetic elements:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall strength,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a moist environment. For outdoor use, we recommend using encapsulated magnets, such as those made of polymer,
- Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
- Possible threat related to magnet particles may arise, especially if swallowed, which is important in the context of child safety. Moreover, minuscule fragments from these assemblies can disrupt scanning once in the system,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Caution with Neodymium Magnets
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are highly susceptible to damage, leading to breaking.
Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets should not be around children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Safety precautions!
To show why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.