MPL 30x20x4 / N38 - lamellar magnet
lamellar magnet
Catalog no 020286
GTIN/EAN: 5906301811848
length
30 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
18 g
Magnetization Direction
↑ axial
Load capacity
6.30 kg / 61.84 N
Magnetic Induction
180.57 mT / 1806 Gs
Coating
[NiCuNi] Nickel
10.23 ZŁ with VAT / pcs + price for transport
8.32 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 22 499 98 98
otherwise send us a note using
inquiry form
the contact form page.
Lifting power along with shape of a neodymium magnet can be estimated using our
online calculation tool.
Same-day processing for orders placed before 14:00.
Physical properties - MPL 30x20x4 / N38 - lamellar magnet
Specification / characteristics - MPL 30x20x4 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020286 |
| GTIN/EAN | 5906301811848 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 30 mm [±0,1 mm] |
| Width | 20 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 18 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 6.30 kg / 61.84 N |
| Magnetic Induction ~ ? | 180.57 mT / 1806 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the assembly - report
The following information are the result of a engineering simulation. Results are based on models for the class Nd2Fe14B. Actual conditions may differ from theoretical values. Use these calculations as a reference point for designers.
Table 1: Static pull force (force vs gap) - characteristics
MPL 30x20x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1805 Gs
180.5 mT
|
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
warning |
| 1 mm |
1728 Gs
172.8 mT
|
5.77 kg / 12.72 lbs
5771.5 g / 56.6 N
|
warning |
| 2 mm |
1628 Gs
162.8 mT
|
5.13 kg / 11.30 lbs
5125.7 g / 50.3 N
|
warning |
| 3 mm |
1515 Gs
151.5 mT
|
4.43 kg / 9.78 lbs
4434.6 g / 43.5 N
|
warning |
| 5 mm |
1271 Gs
127.1 mT
|
3.12 kg / 6.89 lbs
3124.3 g / 30.6 N
|
warning |
| 10 mm |
751 Gs
75.1 mT
|
1.09 kg / 2.40 lbs
1088.7 g / 10.7 N
|
weak grip |
| 15 mm |
435 Gs
43.5 mT
|
0.37 kg / 0.81 lbs
366.3 g / 3.6 N
|
weak grip |
| 20 mm |
262 Gs
26.2 mT
|
0.13 kg / 0.29 lbs
132.6 g / 1.3 N
|
weak grip |
| 30 mm |
110 Gs
11.0 mT
|
0.02 kg / 0.05 lbs
23.2 g / 0.2 N
|
weak grip |
| 50 mm |
30 Gs
3.0 mT
|
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
|
weak grip |
Table 2: Sliding hold (wall)
MPL 30x20x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.26 kg / 2.78 lbs
1260.0 g / 12.4 N
|
| 1 mm | Stal (~0.2) |
1.15 kg / 2.54 lbs
1154.0 g / 11.3 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 2.26 lbs
1026.0 g / 10.1 N
|
| 3 mm | Stal (~0.2) |
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| 5 mm | Stal (~0.2) |
0.62 kg / 1.38 lbs
624.0 g / 6.1 N
|
| 10 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
218.0 g / 2.1 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MPL 30x20x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.26 kg / 2.78 lbs
1260.0 g / 12.4 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
3.15 kg / 6.94 lbs
3150.0 g / 30.9 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MPL 30x20x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| 1 mm |
|
1.58 kg / 3.47 lbs
1575.0 g / 15.5 N
|
| 2 mm |
|
3.15 kg / 6.94 lbs
3150.0 g / 30.9 N
|
| 3 mm |
|
4.73 kg / 10.42 lbs
4725.0 g / 46.4 N
|
| 5 mm |
|
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
| 10 mm |
|
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
| 11 mm |
|
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
| 12 mm |
|
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
Table 5: Thermal resistance (material behavior) - power drop
MPL 30x20x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.30 kg / 13.89 lbs
6300.0 g / 61.8 N
|
OK |
| 40 °C | -2.2% |
6.16 kg / 13.58 lbs
6161.4 g / 60.4 N
|
OK |
| 60 °C | -4.4% |
6.02 kg / 13.28 lbs
6022.8 g / 59.1 N
|
|
| 80 °C | -6.6% |
5.88 kg / 12.97 lbs
5884.2 g / 57.7 N
|
|
| 100 °C | -28.8% |
4.49 kg / 9.89 lbs
4485.6 g / 44.0 N
|
Table 6: Two magnets (attraction) - field range
MPL 30x20x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.06 kg / 26.58 lbs
3 198 Gs
|
1.81 kg / 3.99 lbs
1809 g / 17.7 N
|
N/A |
| 1 mm |
11.59 kg / 25.55 lbs
3 540 Gs
|
1.74 kg / 3.83 lbs
1739 g / 17.1 N
|
10.43 kg / 23.00 lbs
~0 Gs
|
| 2 mm |
11.05 kg / 24.35 lbs
3 456 Gs
|
1.66 kg / 3.65 lbs
1657 g / 16.3 N
|
9.94 kg / 21.92 lbs
~0 Gs
|
| 3 mm |
10.45 kg / 23.03 lbs
3 361 Gs
|
1.57 kg / 3.45 lbs
1567 g / 15.4 N
|
9.40 kg / 20.73 lbs
~0 Gs
|
| 5 mm |
9.15 kg / 20.18 lbs
3 146 Gs
|
1.37 kg / 3.03 lbs
1373 g / 13.5 N
|
8.24 kg / 18.16 lbs
~0 Gs
|
| 10 mm |
5.98 kg / 13.18 lbs
2 543 Gs
|
0.90 kg / 1.98 lbs
897 g / 8.8 N
|
5.38 kg / 11.86 lbs
~0 Gs
|
| 20 mm |
2.08 kg / 4.59 lbs
1 501 Gs
|
0.31 kg / 0.69 lbs
313 g / 3.1 N
|
1.88 kg / 4.13 lbs
~0 Gs
|
| 50 mm |
0.10 kg / 0.22 lbs
331 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.10 lbs
219 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.05 lbs
151 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
108 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
80 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
60 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - warnings
MPL 30x20x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 10.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 7.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 6.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 4.5 cm |
| Remote | 50 Gs (5.0 mT) | 4.5 cm |
| Payment card | 400 Gs (40.0 mT) | 2.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Dynamics (kinetic energy) - collision effects
MPL 30x20x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
20.81 km/h
(5.78 m/s)
|
0.30 J | |
| 30 mm |
32.75 km/h
(9.10 m/s)
|
0.75 J | |
| 50 mm |
42.20 km/h
(11.72 m/s)
|
1.24 J | |
| 100 mm |
59.66 km/h
(16.57 m/s)
|
2.47 J |
Table 9: Corrosion resistance
MPL 30x20x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 30x20x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 12 775 Mx | 127.8 µWb |
| Pc Coefficient | 0.22 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 30x20x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 6.30 kg | Standard |
| Water (riverbed) |
7.21 kg
(+0.91 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Warning: On a vertical surface, the magnet retains only a fraction of its nominal pull.
2. Plate thickness effect
*Thin steel (e.g. computer case) drastically limits the holding force.
3. Power loss vs temp
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.22
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more products
Strengths as well as weaknesses of neodymium magnets.
Advantages
- Their power is maintained, and after approximately 10 years it decreases only by ~1% (theoretically),
- They maintain their magnetic properties even under strong external field,
- By covering with a smooth layer of nickel, the element gains an nice look,
- The surface of neodymium magnets generates a concentrated magnetic field – this is a distinguishing feature,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Possibility of exact modeling as well as adjusting to precise requirements,
- Wide application in advanced technology sectors – they serve a role in data components, electromotive mechanisms, medical devices, also complex engineering applications.
- Thanks to their power density, small magnets offer high operating force, with minimal size,
Limitations
- To avoid cracks upon strong impacts, we suggest using special steel holders. Such a solution secures the magnet and simultaneously improves its durability.
- We warn that neodymium magnets can reduce their strength at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material resistant to moisture, in case of application outdoors
- We recommend casing - magnetic mount, due to difficulties in creating nuts inside the magnet and complicated shapes.
- Health risk to health – tiny shards of magnets are risky, if swallowed, which gains importance in the aspect of protecting the youngest. Additionally, tiny parts of these products are able to complicate diagnosis medical in case of swallowing.
- Due to neodymium price, their price is relatively high,
Pull force analysis
Best holding force of the magnet in ideal parameters – what affects it?
- on a plate made of mild steel, effectively closing the magnetic flux
- possessing a thickness of at least 10 mm to ensure full flux closure
- with an ideally smooth contact surface
- without any insulating layer between the magnet and steel
- during pulling in a direction vertical to the mounting surface
- at conditions approx. 20°C
Determinants of practical lifting force of a magnet
- Distance (betwixt the magnet and the plate), because even a very small clearance (e.g. 0.5 mm) can cause a decrease in force by up to 50% (this also applies to paint, rust or dirt).
- Angle of force application – maximum parameter is obtained only during perpendicular pulling. The resistance to sliding of the magnet along the plate is typically many times smaller (approx. 1/5 of the lifting capacity).
- Steel thickness – too thin plate does not close the flux, causing part of the flux to be escaped to the other side.
- Steel grade – ideal substrate is pure iron steel. Hardened steels may attract less.
- Surface structure – the smoother and more polished the plate, the better the adhesion and stronger the hold. Roughness creates an air distance.
- Temperature influence – hot environment reduces magnetic field. Too high temperature can permanently demagnetize the magnet.
Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as 5 times. Additionally, even a small distance between the magnet’s surface and the plate decreases the load capacity.
H&S for magnets
Data carriers
Avoid bringing magnets near a purse, computer, or TV. The magnetism can destroy these devices and erase data from cards.
GPS and phone interference
Note: neodymium magnets produce a field that interferes with precision electronics. Maintain a separation from your mobile, device, and GPS.
Do not underestimate power
Handle with care. Neodymium magnets act from a long distance and connect with huge force, often faster than you can move away.
Physical harm
Large magnets can break fingers instantly. Under no circumstances put your hand betwixt two strong magnets.
Maximum temperature
Watch the temperature. Exposing the magnet above 80 degrees Celsius will permanently weaken its properties and strength.
Beware of splinters
Despite metallic appearance, neodymium is brittle and cannot withstand shocks. Do not hit, as the magnet may crumble into hazardous fragments.
Machining danger
Mechanical processing of neodymium magnets carries a risk of fire risk. Magnetic powder reacts violently with oxygen and is difficult to extinguish.
Implant safety
People with a pacemaker must maintain an absolute distance from magnets. The magnetic field can disrupt the operation of the life-saving device.
Skin irritation risks
A percentage of the population suffer from a contact allergy to Ni, which is the typical protective layer for NdFeB magnets. Extended handling may cause a rash. It is best to wear protective gloves.
Adults only
Strictly store magnets out of reach of children. Risk of swallowing is significant, and the effects of magnets clamping inside the body are fatal.
