e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in solid and airtight enclosure are excellent for use in difficult, demanding weather conditions, including during rain and snow see...

magnets with holders

Magnetic holders can be used to improve manufacturing, underwater exploration, or searching for meteors from gold check...

Order is always shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x300 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130373

GTIN: 5906301813217

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

300 mm

Weight

0.01 g

910.20 with VAT / pcs + price for transport

740.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
740.00 ZŁ
910.20 ZŁ
price from 5 pcs
703.00 ZŁ
864.69 ZŁ
price from 10 pcs
666.00 ZŁ
819.18 ZŁ

Not sure which magnet to buy?

Pick up the phone and ask +48 22 499 98 98 or drop us a message through request form the contact page.
Force along with shape of a magnet can be analyzed with our our magnetic calculator.

Order by 14:00 and we’ll ship today!

SM 25x300 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x300 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130373
GTIN
5906301813217
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
300 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. Due to this, it is possible to precisely separate ferromagnetic elements from different substances. An important element of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in food production for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rods are made from durable acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, often called cylindrical magnets, are used in metal separation, food production as well as waste processing. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Often it is believed that the greater the magnet's power, the better. But, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, most often stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, type AISI 316 steel is highly recommended thanks to its outstanding anti-corrosion properties.
Magnetic bars stand out for their unique configuration of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out once every 24 months. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
  • They protect against demagnetization induced by external magnetic fields effectively,
  • Because of the reflective layer of nickel, the component looks aesthetically refined,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Key role in modern technologies – they are utilized in hard drives, rotating machines, clinical machines as well as sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also reinforces its overall strength,
  • They lose field intensity at elevated temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a wet environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of plastic,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
  • Health risk linked to microscopic shards may arise, if ingested accidentally, which is significant in the protection of children. Moreover, minuscule fragments from these products can hinder health screening after being swallowed,
  • Due to a complex production process, their cost is relatively high,

Magnetic strength at its maximum – what contributes to it?

The given holding capacity of the magnet means the highest holding force, assessed in the best circumstances, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • at room temperature

Determinants of lifting force in real conditions

The lifting capacity of a magnet is influenced by in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a polished steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the holding force.

Be Cautious with Neodymium Magnets

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets will bounce and clash together within a radius of several to almost 10 cm from each other.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 Maintain neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Magnets made of neodymium are particularly delicate, resulting in damage.

Magnets made of neodymium are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Warning!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98