MPL 25x15x2 / N38 - lamellar magnet
lamellar magnet
Catalog no 020392
GTIN/EAN: 5906301811893
length
25 mm [±0,1 mm]
Width
15 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
5.63 g
Magnetization Direction
↑ axial
Load capacity
1.89 kg / 18.56 N
Magnetic Induction
120.03 mT / 1200 Gs
Coating
[NiCuNi] Nickel
2.39 ZŁ with VAT / pcs + price for transport
1.940 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 22 499 98 98
alternatively get in touch using
form
the contact page.
Strength and form of neodymium magnets can be verified using our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
Detailed specification - MPL 25x15x2 / N38 - lamellar magnet
Specification / characteristics - MPL 25x15x2 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020392 |
| GTIN/EAN | 5906301811893 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 25 mm [±0,1 mm] |
| Width | 15 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 5.63 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.89 kg / 18.56 N |
| Magnetic Induction ~ ? | 120.03 mT / 1200 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the magnet - technical parameters
Presented information constitute the direct effect of a physical simulation. Values rely on models for the class Nd2Fe14B. Real-world conditions may deviate from the simulation results. Treat these calculations as a preliminary roadmap when designing systems.
Table 1: Static pull force (force vs gap) - power drop
MPL 25x15x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1200 Gs
120.0 mT
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
weak grip |
| 1 mm |
1144 Gs
114.4 mT
|
1.72 kg / 3.79 lbs
1717.6 g / 16.8 N
|
weak grip |
| 2 mm |
1060 Gs
106.0 mT
|
1.48 kg / 3.25 lbs
1475.6 g / 14.5 N
|
weak grip |
| 3 mm |
961 Gs
96.1 mT
|
1.21 kg / 2.67 lbs
1212.1 g / 11.9 N
|
weak grip |
| 5 mm |
754 Gs
75.4 mT
|
0.75 kg / 1.65 lbs
746.8 g / 7.3 N
|
weak grip |
| 10 mm |
376 Gs
37.6 mT
|
0.19 kg / 0.41 lbs
185.6 g / 1.8 N
|
weak grip |
| 15 mm |
193 Gs
19.3 mT
|
0.05 kg / 0.11 lbs
48.9 g / 0.5 N
|
weak grip |
| 20 mm |
107 Gs
10.7 mT
|
0.02 kg / 0.03 lbs
15.0 g / 0.1 N
|
weak grip |
| 30 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.00 lbs
2.2 g / 0.0 N
|
weak grip |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
weak grip |
Table 2: Vertical capacity (vertical surface)
MPL 25x15x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
378.0 g / 3.7 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 2 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 3 mm | Stal (~0.2) |
0.24 kg / 0.53 lbs
242.0 g / 2.4 N
|
| 5 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MPL 25x15x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.57 kg / 1.25 lbs
567.0 g / 5.6 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.83 lbs
378.0 g / 3.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.42 lbs
189.0 g / 1.9 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.95 kg / 2.08 lbs
945.0 g / 9.3 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MPL 25x15x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.42 lbs
189.0 g / 1.9 N
|
| 1 mm |
|
0.47 kg / 1.04 lbs
472.5 g / 4.6 N
|
| 2 mm |
|
0.95 kg / 2.08 lbs
945.0 g / 9.3 N
|
| 3 mm |
|
1.42 kg / 3.13 lbs
1417.5 g / 13.9 N
|
| 5 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| 10 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| 11 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| 12 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
Table 5: Thermal resistance (material behavior) - resistance threshold
MPL 25x15x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
OK |
| 40 °C | -2.2% |
1.85 kg / 4.08 lbs
1848.4 g / 18.1 N
|
OK |
| 60 °C | -4.4% |
1.81 kg / 3.98 lbs
1806.8 g / 17.7 N
|
|
| 80 °C | -6.6% |
1.77 kg / 3.89 lbs
1765.3 g / 17.3 N
|
|
| 100 °C | -28.8% |
1.35 kg / 2.97 lbs
1345.7 g / 13.2 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MPL 25x15x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.33 kg / 7.34 lbs
2 260 Gs
|
0.50 kg / 1.10 lbs
499 g / 4.9 N
|
N/A |
| 1 mm |
3.20 kg / 7.05 lbs
2 353 Gs
|
0.48 kg / 1.06 lbs
480 g / 4.7 N
|
2.88 kg / 6.35 lbs
~0 Gs
|
| 2 mm |
3.03 kg / 6.67 lbs
2 288 Gs
|
0.45 kg / 1.00 lbs
454 g / 4.5 N
|
2.72 kg / 6.00 lbs
~0 Gs
|
| 3 mm |
2.82 kg / 6.22 lbs
2 210 Gs
|
0.42 kg / 0.93 lbs
423 g / 4.2 N
|
2.54 kg / 5.60 lbs
~0 Gs
|
| 5 mm |
2.37 kg / 5.22 lbs
2 024 Gs
|
0.36 kg / 0.78 lbs
355 g / 3.5 N
|
2.13 kg / 4.70 lbs
~0 Gs
|
| 10 mm |
1.32 kg / 2.90 lbs
1 509 Gs
|
0.20 kg / 0.44 lbs
197 g / 1.9 N
|
1.18 kg / 2.61 lbs
~0 Gs
|
| 20 mm |
0.33 kg / 0.72 lbs
752 Gs
|
0.05 kg / 0.11 lbs
49 g / 0.5 N
|
0.29 kg / 0.65 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
128 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
81 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MPL 25x15x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 6.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 4.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 3.5 cm |
| Car key | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (kinetic energy) - collision effects
MPL 25x15x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
19.58 km/h
(5.44 m/s)
|
0.08 J | |
| 30 mm |
32.03 km/h
(8.90 m/s)
|
0.22 J | |
| 50 mm |
41.32 km/h
(11.48 m/s)
|
0.37 J | |
| 100 mm |
58.43 km/h
(16.23 m/s)
|
0.74 J |
Table 9: Coating parameters (durability)
MPL 25x15x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 25x15x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 5 600 Mx | 56.0 µWb |
| Pc Coefficient | 0.14 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 25x15x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.89 kg | Standard |
| Water (riverbed) |
2.16 kg
(+0.27 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical surface, the magnet holds only approx. 20-30% of its max power.
2. Steel saturation
*Thin steel (e.g. computer case) severely reduces the holding force.
3. Power loss vs temp
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.14
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Strengths and weaknesses of Nd2Fe14B magnets.
Benefits
- They retain full power for nearly 10 years – the loss is just ~1% (based on simulations),
- They possess excellent resistance to weakening of magnetic properties when exposed to external magnetic sources,
- The use of an elegant layer of noble metals (nickel, gold, silver) causes the element to present itself better,
- Magnets are distinguished by exceptionally strong magnetic induction on the working surface,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- Possibility of precise modeling and optimizing to specific needs,
- Fundamental importance in modern technologies – they are commonly used in hard drives, motor assemblies, diagnostic systems, and industrial machines.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in tiny dimensions, which makes them useful in compact constructions
Cons
- Susceptibility to cracking is one of their disadvantages. Upon strong impact they can break. We recommend keeping them in a special holder, which not only secures them against impacts but also raises their durability
- When exposed to high temperature, neodymium magnets suffer a drop in strength. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
- We recommend casing - magnetic mechanism, due to difficulties in producing nuts inside the magnet and complex shapes.
- Possible danger to health – tiny shards of magnets can be dangerous, if swallowed, which becomes key in the context of child safety. Additionally, small components of these devices are able to be problematic in diagnostics medical after entering the body.
- Due to complex production process, their price is higher than average,
Pull force analysis
Maximum magnetic pulling force – what it depends on?
- using a base made of high-permeability steel, acting as a magnetic yoke
- whose transverse dimension equals approx. 10 mm
- with an ideally smooth contact surface
- without the slightest clearance between the magnet and steel
- for force applied at a right angle (pull-off, not shear)
- at room temperature
Determinants of practical lifting force of a magnet
- Clearance – the presence of foreign body (paint, dirt, gap) acts as an insulator, which lowers capacity rapidly (even by 50% at 0.5 mm).
- Pull-off angle – note that the magnet has greatest strength perpendicularly. Under shear forces, the capacity drops significantly, often to levels of 20-30% of the nominal value.
- Base massiveness – insufficiently thick sheet does not close the flux, causing part of the power to be wasted to the other side.
- Chemical composition of the base – low-carbon steel gives the best results. Alloy admixtures decrease magnetic properties and lifting capacity.
- Plate texture – ground elements ensure maximum contact, which increases field saturation. Rough surfaces weaken the grip.
- Operating temperature – NdFeB sinters have a negative temperature coefficient. At higher temperatures they lose power, and in frost they can be stronger (up to a certain limit).
Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Additionally, even a slight gap between the magnet and the plate lowers the holding force.
Safety rules for work with neodymium magnets
Magnets are brittle
Protect your eyes. Magnets can fracture upon uncontrolled impact, launching sharp fragments into the air. We recommend safety glasses.
Fire warning
Machining of NdFeB material poses a fire risk. Neodymium dust reacts violently with oxygen and is hard to extinguish.
Serious injuries
Large magnets can break fingers instantly. Under no circumstances place your hand betwixt two attracting surfaces.
Warning for heart patients
Patients with a heart stimulator have to maintain an large gap from magnets. The magnetism can interfere with the functioning of the life-saving device.
No play value
Always store magnets away from children. Risk of swallowing is significant, and the effects of magnets clamping inside the body are tragic.
Impact on smartphones
Remember: neodymium magnets produce a field that disrupts precision electronics. Keep a safe distance from your phone, tablet, and navigation systems.
Safe operation
Before use, check safety instructions. Uncontrolled attraction can destroy the magnet or injure your hand. Think ahead.
Operating temperature
Control the heat. Exposing the magnet to high heat will ruin its magnetic structure and strength.
Protect data
Intense magnetic fields can erase data on credit cards, HDDs, and other magnetic media. Keep a distance of at least 10 cm.
Allergic reactions
Allergy Notice: The nickel-copper-nickel coating consists of nickel. If skin irritation happens, immediately stop working with magnets and use protective gear.
