Neodymium magnets – strongest on the market

Looking for massive power in small size? We offer wide selection of various shapes and sizes. Perfect for for home use, workshop and industrial tasks. Browse assortment with fast shipping.

see price list and dimensions

Grips for seabed exploration

Start your adventure involving underwater treasure hunting! Our specialized grips (F200, F400) provide grip certainty and immense power. Solid, corrosion-resistant housing and reinforced ropes are reliable in challenging water conditions.

find your water magnet

Magnetic mounts for industry

Proven solutions for mounting non-invasive. Threaded grips (M8, M10, M12) provide instant organization of work on warehouses. They are indispensable installing lighting, detectors and banners.

check industrial applications

🚚 Order by 14:00 – we'll ship same day!

Dhit sp. z o.o.
Product available Ships tomorrow

MW 4x8 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010079

GTIN/EAN: 5906301810780

5.00

Diameter Ø

4 mm [±0,1 mm]

Height

8 mm [±0,1 mm]

Weight

0.75 g

Magnetization Direction

↑ axial

Load capacity

0.35 kg / 3.48 N

Magnetic Induction

599.59 mT / 5996 Gs

Coating

[NiCuNi] Nickel

0.701 with VAT / pcs + price for transport

0.570 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.570 ZŁ
0.701 ZŁ
price from 1100 pcs
0.536 ZŁ
0.659 ZŁ
price from 4400 pcs
0.502 ZŁ
0.617 ZŁ
Do you have a hard time selecting?

Pick up the phone and ask +48 22 499 98 98 if you prefer send us a note using request form through our site.
Lifting power and appearance of neodymium magnets can be reviewed using our magnetic mass calculator.

Orders submitted before 14:00 will be dispatched today!

Physical properties - MW 4x8 / N38 - cylindrical magnet

Specification / characteristics - MW 4x8 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010079
GTIN/EAN 5906301810780
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 4 mm [±0,1 mm]
Height 8 mm [±0,1 mm]
Weight 0.75 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.35 kg / 3.48 N
Magnetic Induction ~ ? 599.59 mT / 5996 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 4x8 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical simulation of the assembly - data

The following information represent the outcome of a engineering analysis. Values are based on algorithms for the material Nd2Fe14B. Actual performance may differ from theoretical values. Treat these data as a supplementary guide for designers.

Table 1: Static pull force (force vs gap) - power drop
MW 4x8 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 5984 Gs
598.4 mT
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
safe
1 mm 3280 Gs
328.0 mT
0.11 kg / 0.23 lbs
105.1 g / 1.0 N
safe
2 mm 1696 Gs
169.6 mT
0.03 kg / 0.06 lbs
28.1 g / 0.3 N
safe
3 mm 941 Gs
94.1 mT
0.01 kg / 0.02 lbs
8.7 g / 0.1 N
safe
5 mm 371 Gs
37.1 mT
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
safe
10 mm 82 Gs
8.2 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
safe
15 mm 31 Gs
3.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
20 mm 15 Gs
1.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Sliding load (vertical surface)
MW 4x8 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.07 kg / 0.15 lbs
70.0 g / 0.7 N
1 mm Stal (~0.2) 0.02 kg / 0.05 lbs
22.0 g / 0.2 N
2 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
3 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
5 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Vertical assembly (sliding) - vertical pull
MW 4x8 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.11 kg / 0.23 lbs
105.0 g / 1.0 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.03 kg / 0.08 lbs
35.0 g / 0.3 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.18 kg / 0.39 lbs
175.0 g / 1.7 N

Table 4: Steel thickness (saturation) - power losses
MW 4x8 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.03 kg / 0.08 lbs
35.0 g / 0.3 N
1 mm
25%
0.09 kg / 0.19 lbs
87.5 g / 0.9 N
2 mm
50%
0.18 kg / 0.39 lbs
175.0 g / 1.7 N
3 mm
75%
0.26 kg / 0.58 lbs
262.5 g / 2.6 N
5 mm
100%
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
10 mm
100%
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
11 mm
100%
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
12 mm
100%
0.35 kg / 0.77 lbs
350.0 g / 3.4 N

Table 5: Working in heat (stability) - resistance threshold
MW 4x8 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.35 kg / 0.77 lbs
350.0 g / 3.4 N
OK
40 °C -2.2% 0.34 kg / 0.75 lbs
342.3 g / 3.4 N
OK
60 °C -4.4% 0.33 kg / 0.74 lbs
334.6 g / 3.3 N
OK
80 °C -6.6% 0.33 kg / 0.72 lbs
326.9 g / 3.2 N
100 °C -28.8% 0.25 kg / 0.55 lbs
249.2 g / 2.4 N

Table 6: Two magnets (attraction) - field collision
MW 4x8 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Lateral Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 2.77 kg / 6.12 lbs
6 121 Gs
0.42 kg / 0.92 lbs
416 g / 4.1 N
N/A
1 mm 1.59 kg / 3.51 lbs
9 063 Gs
0.24 kg / 0.53 lbs
239 g / 2.3 N
1.43 kg / 3.16 lbs
~0 Gs
2 mm 0.83 kg / 1.84 lbs
6 559 Gs
0.12 kg / 0.28 lbs
125 g / 1.2 N
0.75 kg / 1.65 lbs
~0 Gs
3 mm 0.43 kg / 0.94 lbs
4 694 Gs
0.06 kg / 0.14 lbs
64 g / 0.6 N
0.38 kg / 0.85 lbs
~0 Gs
5 mm 0.12 kg / 0.27 lbs
2 498 Gs
0.02 kg / 0.04 lbs
18 g / 0.2 N
0.11 kg / 0.24 lbs
~0 Gs
10 mm 0.01 kg / 0.02 lbs
743 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.02 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
165 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
17 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
7 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
5 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Protective zones (electronics) - warnings
MW 4x8 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.5 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Mechanical watch 20 Gs (2.0 mT) 2.0 cm
Mobile device 40 Gs (4.0 mT) 1.5 cm
Car key 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 0.5 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Impact energy (kinetic energy) - collision effects
MW 4x8 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 21.79 km/h
(6.05 m/s)
0.01 J
30 mm 37.74 km/h
(10.48 m/s)
0.04 J
50 mm 48.72 km/h
(13.53 m/s)
0.07 J
100 mm 68.89 km/h
(19.14 m/s)
0.14 J

Table 9: Corrosion resistance
MW 4x8 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MW 4x8 / N38

Parameter Value SI Unit / Description
Magnetic Flux 836 Mx 8.4 µWb
Pc Coefficient 1.21 High (Stable)

Table 11: Submerged application
MW 4x8 / N38

Environment Effective steel pull Effect
Air (land) 0.35 kg Standard
Water (riverbed) 0.40 kg
(+0.05 kg buoyancy gain)
+14.5%
Corrosion warning: Remember to wipe the magnet thoroughly after removing it from water and apply a protective layer (e.g., oil) to avoid corrosion.
1. Wall mount (shear)

*Warning: On a vertical surface, the magnet retains only a fraction of its nominal pull.

2. Plate thickness effect

*Thin steel (e.g. computer case) significantly limits the holding force.

3. Thermal stability

*For N38 grade, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.21

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010079-2026
Magnet Unit Converter
Force (pull)

Magnetic Induction

See also deals

This product is an exceptionally strong rod magnet, made from advanced NdFeB material, which, at dimensions of Ø4x8 mm, guarantees maximum efficiency. The MW 4x8 / N38 model features high dimensional repeatability and industrial build quality, making it a perfect solution for the most demanding engineers and designers. As a magnetic rod with significant force (approx. 0.35 kg), this product is available off-the-shelf from our European logistics center, ensuring lightning-fast order fulfillment. Furthermore, its Ni-Cu-Ni coating secures it against corrosion in standard operating conditions, guaranteeing an aesthetic appearance and durability for years.
This model is created for building generators, advanced Hall effect sensors, and efficient filters, where field concentration on a small surface counts. Thanks to the pull force of 3.48 N with a weight of only 0.75 g, this rod is indispensable in miniature devices and wherever low weight is crucial.
Since our magnets have a tolerance of ±0.1mm, the best method is to glue them into holes with a slightly larger diameter (e.g., 4.1 mm) using two-component epoxy glues. To ensure stability in industry, specialized industrial adhesives are used, which are safe for nickel and fill the gap, guaranteeing high repeatability of the connection.
Grade N38 is the most frequently chosen standard for industrial neodymium magnets, offering an optimal price-to-power ratio and high resistance to demagnetization. If you need the strongest magnets in the same volume (Ø4x8), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard available off-the-shelf in our warehouse.
The presented product is a neodymium magnet with precisely defined parameters: diameter 4 mm and height 8 mm. The value of 3.48 N means that the magnet is capable of holding a weight many times exceeding its own mass of 0.75 g. The product has a [NiCuNi] coating, which protects the surface against external factors, giving it an aesthetic, silvery shine.
Standardly, the magnetic axis runs through the center of the cylinder, causing the greatest attraction force to occur on the bases with a diameter of 4 mm. Such an arrangement is standard when connecting magnets in stacks (e.g., in filters) or when mounting in sockets at the bottom of a hole. On request, we can also produce versions magnetized through the diameter if your project requires it.

Strengths and weaknesses of rare earth magnets.

Pros

Apart from their strong holding force, neodymium magnets have these key benefits:
  • They do not lose strength, even after approximately ten years – the drop in lifting capacity is only ~1% (according to tests),
  • Neodymium magnets are characterized by exceptionally resistant to loss of magnetic properties caused by magnetic disturbances,
  • Thanks to the shiny finish, the plating of nickel, gold-plated, or silver-plated gives an elegant appearance,
  • The surface of neodymium magnets generates a powerful magnetic field – this is one of their assets,
  • Due to their durability and thermal resistance, neodymium magnets can operate (depending on the shape) even at high temperatures reaching 230°C or more...
  • Possibility of custom shaping and modifying to atypical applications,
  • Wide application in electronics industry – they serve a role in HDD drives, electromotive mechanisms, advanced medical instruments, as well as other advanced devices.
  • Compactness – despite small sizes they generate large force, making them ideal for precision applications

Disadvantages

Characteristics of disadvantages of neodymium magnets: tips and applications.
  • At strong impacts they can crack, therefore we advise placing them in strong housings. A metal housing provides additional protection against damage and increases the magnet's durability.
  • Neodymium magnets lose their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
  • They rust in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
  • Due to limitations in realizing threads and complex forms in magnets, we recommend using a housing - magnetic mechanism.
  • Potential hazard resulting from small fragments of magnets pose a threat, in case of ingestion, which becomes key in the context of child safety. Additionally, small elements of these magnets are able to disrupt the diagnostic process medical in case of swallowing.
  • High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which can limit application in large quantities

Lifting parameters

Highest magnetic holding forcewhat affects it?

The force parameter is a theoretical maximum value performed under specific, ideal conditions:
  • on a plate made of structural steel, optimally conducting the magnetic flux
  • whose thickness is min. 10 mm
  • with a surface cleaned and smooth
  • with total lack of distance (no paint)
  • under vertical application of breakaway force (90-degree angle)
  • at temperature approx. 20 degrees Celsius

Impact of factors on magnetic holding capacity in practice

Bear in mind that the application force will differ depending on elements below, in order of importance:
  • Clearance – existence of any layer (rust, dirt, air) acts as an insulator, which lowers capacity rapidly (even by 50% at 0.5 mm).
  • Force direction – catalog parameter refers to pulling vertically. When applying parallel force, the magnet exhibits much less (often approx. 20-30% of maximum force).
  • Substrate thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet restricts the lifting capacity (the magnet "punches through" it).
  • Chemical composition of the base – low-carbon steel gives the best results. Alloy admixtures decrease magnetic permeability and lifting capacity.
  • Surface finish – full contact is obtained only on smooth steel. Rough texture reduce the real contact area, weakening the magnet.
  • Temperature influence – high temperature weakens pulling force. Too high temperature can permanently damage the magnet.

Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under parallel forces the lifting capacity is smaller. Moreover, even a minimal clearance between the magnet’s surface and the plate decreases the load capacity.

H&S for magnets
Skin irritation risks

A percentage of the population have a hypersensitivity to Ni, which is the standard coating for NdFeB magnets. Frequent touching might lead to an allergic reaction. We recommend use protective gloves.

Protect data

Avoid bringing magnets close to a wallet, computer, or screen. The magnetic field can destroy these devices and erase data from cards.

Health Danger

For implant holders: Powerful magnets affect electronics. Keep minimum 30 cm distance or ask another person to work with the magnets.

Heat warning

Monitor thermal conditions. Exposing the magnet to high heat will ruin its magnetic structure and strength.

Compass and GPS

Be aware: rare earth magnets produce a field that interferes with precision electronics. Maintain a safe distance from your mobile, tablet, and GPS.

Conscious usage

Handle magnets consciously. Their huge power can shock even professionals. Be vigilant and respect their power.

Product not for children

Neodymium magnets are not intended for children. Eating a few magnets can lead to them pinching intestinal walls, which poses a severe health hazard and necessitates urgent medical intervention.

Protective goggles

Neodymium magnets are sintered ceramics, which means they are prone to chipping. Clashing of two magnets will cause them breaking into small pieces.

Do not drill into magnets

Mechanical processing of NdFeB material poses a fire risk. Magnetic powder reacts violently with oxygen and is difficult to extinguish.

Crushing force

Danger of trauma: The attraction force is so immense that it can cause hematomas, pinching, and even bone fractures. Protective gloves are recommended.

Danger! Learn more about risks in the article: Safety of working with magnets.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98