MW 4x8 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010079
GTIN/EAN: 5906301810780
Diameter Ø
4 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
0.75 g
Magnetization Direction
↑ axial
Load capacity
0.35 kg / 3.48 N
Magnetic Induction
599.59 mT / 5996 Gs
Coating
[NiCuNi] Nickel
0.701 ZŁ with VAT / pcs + price for transport
0.570 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
otherwise drop us a message via
form
through our site.
Force along with structure of neodymium magnets can be analyzed using our
magnetic mass calculator.
Orders submitted before 14:00 will be dispatched today!
Technical data of the product - MW 4x8 / N38 - cylindrical magnet
Specification / characteristics - MW 4x8 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010079 |
| GTIN/EAN | 5906301810780 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 4 mm [±0,1 mm] |
| Height | 8 mm [±0,1 mm] |
| Weight | 0.75 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.35 kg / 3.48 N |
| Magnetic Induction ~ ? | 599.59 mT / 5996 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the product - report
The following information are the outcome of a engineering simulation. Results rely on algorithms for the class Nd2Fe14B. Actual conditions may deviate from the simulation results. Please consider these data as a supplementary guide when designing systems.
Table 1: Static force (force vs gap) - characteristics
MW 4x8 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5984 Gs
598.4 mT
|
0.35 kg / 0.77 pounds
350.0 g / 3.4 N
|
weak grip |
| 1 mm |
3280 Gs
328.0 mT
|
0.11 kg / 0.23 pounds
105.1 g / 1.0 N
|
weak grip |
| 2 mm |
1696 Gs
169.6 mT
|
0.03 kg / 0.06 pounds
28.1 g / 0.3 N
|
weak grip |
| 3 mm |
941 Gs
94.1 mT
|
0.01 kg / 0.02 pounds
8.7 g / 0.1 N
|
weak grip |
| 5 mm |
371 Gs
37.1 mT
|
0.00 kg / 0.00 pounds
1.3 g / 0.0 N
|
weak grip |
| 10 mm |
82 Gs
8.2 mT
|
0.00 kg / 0.00 pounds
0.1 g / 0.0 N
|
weak grip |
| 15 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
weak grip |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
weak grip |
Table 2: Shear force (vertical surface)
MW 4x8 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.07 kg / 0.15 pounds
70.0 g / 0.7 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 0.05 pounds
22.0 g / 0.2 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.01 pounds
6.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
2.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MW 4x8 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.11 kg / 0.23 pounds
105.0 g / 1.0 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.07 kg / 0.15 pounds
70.0 g / 0.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.08 pounds
35.0 g / 0.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.18 kg / 0.39 pounds
175.0 g / 1.7 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 4x8 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.08 pounds
35.0 g / 0.3 N
|
| 1 mm |
|
0.09 kg / 0.19 pounds
87.5 g / 0.9 N
|
| 2 mm |
|
0.18 kg / 0.39 pounds
175.0 g / 1.7 N
|
| 3 mm |
|
0.26 kg / 0.58 pounds
262.5 g / 2.6 N
|
| 5 mm |
|
0.35 kg / 0.77 pounds
350.0 g / 3.4 N
|
| 10 mm |
|
0.35 kg / 0.77 pounds
350.0 g / 3.4 N
|
| 11 mm |
|
0.35 kg / 0.77 pounds
350.0 g / 3.4 N
|
| 12 mm |
|
0.35 kg / 0.77 pounds
350.0 g / 3.4 N
|
Table 5: Thermal resistance (material behavior) - thermal limit
MW 4x8 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.35 kg / 0.77 pounds
350.0 g / 3.4 N
|
OK |
| 40 °C | -2.2% |
0.34 kg / 0.75 pounds
342.3 g / 3.4 N
|
OK |
| 60 °C | -4.4% |
0.33 kg / 0.74 pounds
334.6 g / 3.3 N
|
OK |
| 80 °C | -6.6% |
0.33 kg / 0.72 pounds
326.9 g / 3.2 N
|
|
| 100 °C | -28.8% |
0.25 kg / 0.55 pounds
249.2 g / 2.4 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MW 4x8 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.77 kg / 6.12 pounds
6 121 Gs
|
0.42 kg / 0.92 pounds
416 g / 4.1 N
|
N/A |
| 1 mm |
1.59 kg / 3.51 pounds
9 063 Gs
|
0.24 kg / 0.53 pounds
239 g / 2.3 N
|
1.43 kg / 3.16 pounds
~0 Gs
|
| 2 mm |
0.83 kg / 1.84 pounds
6 559 Gs
|
0.12 kg / 0.28 pounds
125 g / 1.2 N
|
0.75 kg / 1.65 pounds
~0 Gs
|
| 3 mm |
0.43 kg / 0.94 pounds
4 694 Gs
|
0.06 kg / 0.14 pounds
64 g / 0.6 N
|
0.38 kg / 0.85 pounds
~0 Gs
|
| 5 mm |
0.12 kg / 0.27 pounds
2 498 Gs
|
0.02 kg / 0.04 pounds
18 g / 0.2 N
|
0.11 kg / 0.24 pounds
~0 Gs
|
| 10 mm |
0.01 kg / 0.02 pounds
743 Gs
|
0.00 kg / 0.00 pounds
2 g / 0.0 N
|
0.01 kg / 0.02 pounds
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 pounds
165 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 pounds
17 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 pounds
10 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 pounds
7 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 pounds
5 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
3 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
3 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Safety (HSE) (implants) - warnings
MW 4x8 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (cracking risk) - warning
MW 4x8 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
21.79 km/h
(6.05 m/s)
|
0.01 J | |
| 30 mm |
37.74 km/h
(10.48 m/s)
|
0.04 J | |
| 50 mm |
48.72 km/h
(13.53 m/s)
|
0.07 J | |
| 100 mm |
68.89 km/h
(19.14 m/s)
|
0.14 J |
Table 9: Corrosion resistance
MW 4x8 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 4x8 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 836 Mx | 8.4 µWb |
| Pc Coefficient | 1.21 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MW 4x8 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.35 kg | Standard |
| Water (riverbed) |
0.40 kg
(+0.05 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Caution: On a vertical surface, the magnet retains just ~20% of its max power.
2. Plate thickness effect
*Thin steel (e.g. computer case) significantly reduces the holding force.
3. Temperature resistance
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.21
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more offers
Pros as well as cons of neodymium magnets.
Benefits
- They retain magnetic properties for almost 10 years – the drop is just ~1% (in theory),
- Neodymium magnets are characterized by remarkably resistant to magnetic field loss caused by magnetic disturbances,
- In other words, due to the glossy surface of silver, the element becomes visually attractive,
- Magnets are characterized by exceptionally strong magnetic induction on the outer layer,
- Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
- Due to the potential of free shaping and adaptation to specialized projects, neodymium magnets can be created in a wide range of geometric configurations, which increases their versatility,
- Key role in high-tech industry – they find application in hard drives, brushless drives, medical equipment, as well as multitasking production systems.
- Thanks to concentrated force, small magnets offer high operating force, with minimal size,
Weaknesses
- At strong impacts they can break, therefore we advise placing them in steel cases. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
- Magnets exposed to a humid environment can rust. Therefore during using outdoors, we advise using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Limited possibility of creating nuts in the magnet and complicated forms - recommended is casing - magnetic holder.
- Potential hazard to health – tiny shards of magnets are risky, in case of ingestion, which gains importance in the context of child safety. It is also worth noting that small components of these products are able to complicate diagnosis medical in case of swallowing.
- Due to neodymium price, their price exceeds standard values,
Lifting parameters
Highest magnetic holding force – what it depends on?
- using a sheet made of low-carbon steel, acting as a circuit closing element
- with a cross-section of at least 10 mm
- characterized by smoothness
- under conditions of gap-free contact (metal-to-metal)
- under perpendicular application of breakaway force (90-degree angle)
- at ambient temperature room level
Impact of factors on magnetic holding capacity in practice
- Clearance – the presence of foreign body (paint, dirt, air) interrupts the magnetic circuit, which reduces capacity steeply (even by 50% at 0.5 mm).
- Angle of force application – maximum parameter is available only during perpendicular pulling. The force required to slide of the magnet along the plate is standardly several times lower (approx. 1/5 of the lifting capacity).
- Plate thickness – insufficiently thick plate causes magnetic saturation, causing part of the flux to be lost into the air.
- Material composition – different alloys attracts identically. High carbon content worsen the attraction effect.
- Surface condition – smooth surfaces guarantee perfect abutment, which increases field saturation. Rough surfaces weaken the grip.
- Thermal factor – high temperature weakens pulling force. Too high temperature can permanently damage the magnet.
Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. In addition, even a small distance between the magnet and the plate decreases the holding force.
Precautions when working with NdFeB magnets
Physical harm
Big blocks can smash fingers instantly. Do not place your hand between two strong magnets.
Protective goggles
Beware of splinters. Magnets can fracture upon uncontrolled impact, launching shards into the air. We recommend safety glasses.
Skin irritation risks
Medical facts indicate that nickel (the usual finish) is a potent allergen. For allergy sufferers, avoid direct skin contact and opt for versions in plastic housing.
Cards and drives
Powerful magnetic fields can destroy records on payment cards, HDDs, and storage devices. Stay away of min. 10 cm.
Safe operation
Before use, check safety instructions. Uncontrolled attraction can break the magnet or injure your hand. Think ahead.
Machining danger
Dust produced during machining of magnets is self-igniting. Do not drill into magnets without proper cooling and knowledge.
Heat sensitivity
Keep cool. Neodymium magnets are sensitive to temperature. If you require resistance above 80°C, ask us about HT versions (H, SH, UH).
Phone sensors
A powerful magnetic field interferes with the operation of magnetometers in smartphones and navigation systems. Do not bring magnets near a smartphone to prevent damaging the sensors.
Swallowing risk
Strictly keep magnets out of reach of children. Ingestion danger is significant, and the effects of magnets clamping inside the body are very dangerous.
Medical interference
Warning for patients: Strong magnetic fields disrupt medical devices. Maintain minimum 30 cm distance or ask another person to work with the magnets.
