e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. All "neodymium magnets" in our store are available for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy powerful neodymium magnet? Magnet holders in solid and airtight steel enclosure are excellent for use in difficult weather conditions, including snow and rain read...

magnets with holders

Holders with magnets can be used to enhance manufacturing, underwater exploration, or searching for meteors from gold check...

Enjoy shipping of your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping in 2 days!

MW 4x8 / N38 - neodymium magnet

cylindrical magnet

catalog number 010079

GTIN: 5906301810780

5.0

diameter Ø

4 mm [±0,1 mm]

height

8 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

1.77 kg / 17.36 N

magnetic induction ~

599.59 mT / 5,996 Gs

max. temperature

≤ 80 °C

1.50 gross price (including VAT) / pcs +

1.22 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1.22 ZŁ
1.50 ZŁ
price from 492 pcs
1.15 ZŁ
1.41 ZŁ
price from 1804 pcs
1.07 ZŁ
1.32 ZŁ

Want to talk about magnets?

Call us tel: +48 22 499 98 98 or contact us via contact form on our website. You can check the lifting capacity and the shape of neodymium magnet in our magnetic mass calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 4x8 / N38 ↑ axial

Characteristics: cylindrical magnet 4x8 / N38 ↑ axial
Properties
Values
catalog number
010079
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
4 mm [±0,1 mm]
height
8 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
1.77 kg / 17.36 N
magnetic induction ~ ?
599.59 mT / 5,996 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
0.75 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets i.e. MW 4x8 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed traditional iron magnets. Thanks to their power, they are frequently employed in devices that require powerful holding. The standard temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet designated MW 4x8 / N38 and a magnetic force 1.77 kg weighs only 0.75 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of silver to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to check the site for the current information and promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in many applications, they can also constitute certain dangers. Due to their strong magnetic power, they can pull metallic objects with great force, which can lead to crushing skin or other surfaces, especially be careful with fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then forming and thermal processing. Their powerful magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as silver, to protect them from external factors and prolong their durability. Temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Key role in modern technologies – find application in HDD drives, electric motors, medical equipment or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Potential hazard associated with microscopic parts of magnets are risky, when accidentally ingested, which is particularly important in the context of child safety. Furthermore, small elements of these devices have the potential to complicate diagnosis when they are in the body.

Safety Guidelines with Neodymium Magnets

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are especially fragile, resulting in their breakage.

Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If joining of neodymium magnets is not controlled, at that time they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should hold them very strongly.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

To illustrate why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98