e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. All "magnets" on our website are in stock for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for searching F200 GOLD

Where to purchase powerful magnet? Magnetic holders in solid and airtight enclosure are excellent for use in difficult weather conditions, including snow and rain see...

magnetic holders

Magnetic holders can be used to improve manufacturing, underwater discoveries, or locating meteors from gold read...

Shipping is always shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 4x8 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010079

GTIN: 5906301810780

5

Diameter Ø [±0,1 mm]

4 mm

Height [±0,1 mm]

8 mm

Weight

0.75 g

Magnetization Direction

↑ axial

Load capacity

1.77 kg / 17.36 N

Magnetic Induction

599.59 mT

Coating

[NiCuNi] nickel

0.701 with VAT / pcs + price for transport

0.570 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.570 ZŁ
0.701 ZŁ
price from 1100 pcs
0.536 ZŁ
0.659 ZŁ
price from 4400 pcs
0.502 ZŁ
0.617 ZŁ

Not sure about your choice?

Contact us by phone +48 22 499 98 98 or get in touch by means of contact form our website.
Weight along with structure of magnetic components can be tested with our magnetic mass calculator.

Same-day processing for orders placed before 14:00.

MW 4x8 / N38 - cylindrical magnet

Specification/characteristics MW 4x8 / N38 - cylindrical magnet
properties
values
Cat. no.
010079
GTIN
5906301810780
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
4 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
0.75 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.77 kg / 17.36 N
Magnetic Induction ~ ?
599.59 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 4x8 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which outperform traditional iron magnets. Thanks to their strength, they are frequently used in devices that require strong adhesion. The typical temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet named MW 4x8 / N38 with a magnetic force 1.77 kg has a weight of only 0.75 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the latest information and offers, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are useful in various applications, they can also pose certain risk. Because of their strong magnetic power, they can attract metallic objects with significant force, which can lead to damaging skin and other materials, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with other metals and then shaping and heat treating. Their unmatched magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as epoxy, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical magnet with classification N50 and N52 is a strong and powerful metal object in the form of a cylinder, providing high force and universal applicability. Competitive price, availability, ruggedness and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their strength is durable, and after approximately 10 years, it drops only by ~1% (according to research),
  • They show strong resistance to demagnetization from external field exposure,
  • Thanks to the shiny finish and nickel coating, they have an visually attractive appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • With the option for fine forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Significant impact in advanced technical fields – they are utilized in HDDs, electric drives, clinical machines or even technologically developed systems,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
  • Limited ability to create complex details in the magnet – the use of a housing is recommended,
  • Health risk related to magnet particles may arise, if ingested accidentally, which is significant in the protection of children. Additionally, small elements from these devices can interfere with diagnostics once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum holding power of the magnet – what contributes to it?

The given pulling force of the magnet represents the maximum force, assessed in the best circumstances, that is:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • in a perpendicular direction of force
  • under standard ambient temperature

Magnet lifting force in use – key factors

The lifting capacity of a magnet depends on in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.

Be Cautious with Neodymium Magnets

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets are fragile and can easily crack as well as get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If have a finger between or on the path of attracting magnets, there may be a severe cut or even a fracture.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

 Maintain neodymium magnets far from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Safety precautions!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98