MW 4x8 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010079
GTIN/EAN: 5906301810780
Diameter Ø
4 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
0.75 g
Magnetization Direction
↑ axial
Load capacity
0.35 kg / 3.48 N
Magnetic Induction
599.59 mT / 5996 Gs
Coating
[NiCuNi] Nickel
0.701 ZŁ with VAT / pcs + price for transport
0.570 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
if you prefer send us a note using
request form
through our site.
Lifting power and appearance of neodymium magnets can be reviewed using our
magnetic mass calculator.
Orders submitted before 14:00 will be dispatched today!
Physical properties - MW 4x8 / N38 - cylindrical magnet
Specification / characteristics - MW 4x8 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010079 |
| GTIN/EAN | 5906301810780 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 4 mm [±0,1 mm] |
| Height | 8 mm [±0,1 mm] |
| Weight | 0.75 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.35 kg / 3.48 N |
| Magnetic Induction ~ ? | 599.59 mT / 5996 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical simulation of the assembly - data
The following information represent the outcome of a engineering analysis. Values are based on algorithms for the material Nd2Fe14B. Actual performance may differ from theoretical values. Treat these data as a supplementary guide for designers.
Table 1: Static pull force (force vs gap) - power drop
MW 4x8 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5984 Gs
598.4 mT
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
safe |
| 1 mm |
3280 Gs
328.0 mT
|
0.11 kg / 0.23 lbs
105.1 g / 1.0 N
|
safe |
| 2 mm |
1696 Gs
169.6 mT
|
0.03 kg / 0.06 lbs
28.1 g / 0.3 N
|
safe |
| 3 mm |
941 Gs
94.1 mT
|
0.01 kg / 0.02 lbs
8.7 g / 0.1 N
|
safe |
| 5 mm |
371 Gs
37.1 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
safe |
| 10 mm |
82 Gs
8.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
| 15 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Sliding load (vertical surface)
MW 4x8 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MW 4x8 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.11 kg / 0.23 lbs
105.0 g / 1.0 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.08 lbs
35.0 g / 0.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.18 kg / 0.39 lbs
175.0 g / 1.7 N
|
Table 4: Steel thickness (saturation) - power losses
MW 4x8 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.08 lbs
35.0 g / 0.3 N
|
| 1 mm |
|
0.09 kg / 0.19 lbs
87.5 g / 0.9 N
|
| 2 mm |
|
0.18 kg / 0.39 lbs
175.0 g / 1.7 N
|
| 3 mm |
|
0.26 kg / 0.58 lbs
262.5 g / 2.6 N
|
| 5 mm |
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 10 mm |
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 11 mm |
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 12 mm |
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
Table 5: Working in heat (stability) - resistance threshold
MW 4x8 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
OK |
| 40 °C | -2.2% |
0.34 kg / 0.75 lbs
342.3 g / 3.4 N
|
OK |
| 60 °C | -4.4% |
0.33 kg / 0.74 lbs
334.6 g / 3.3 N
|
OK |
| 80 °C | -6.6% |
0.33 kg / 0.72 lbs
326.9 g / 3.2 N
|
|
| 100 °C | -28.8% |
0.25 kg / 0.55 lbs
249.2 g / 2.4 N
|
Table 6: Two magnets (attraction) - field collision
MW 4x8 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.77 kg / 6.12 lbs
6 121 Gs
|
0.42 kg / 0.92 lbs
416 g / 4.1 N
|
N/A |
| 1 mm |
1.59 kg / 3.51 lbs
9 063 Gs
|
0.24 kg / 0.53 lbs
239 g / 2.3 N
|
1.43 kg / 3.16 lbs
~0 Gs
|
| 2 mm |
0.83 kg / 1.84 lbs
6 559 Gs
|
0.12 kg / 0.28 lbs
125 g / 1.2 N
|
0.75 kg / 1.65 lbs
~0 Gs
|
| 3 mm |
0.43 kg / 0.94 lbs
4 694 Gs
|
0.06 kg / 0.14 lbs
64 g / 0.6 N
|
0.38 kg / 0.85 lbs
~0 Gs
|
| 5 mm |
0.12 kg / 0.27 lbs
2 498 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 10 mm |
0.01 kg / 0.02 lbs
743 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
165 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - warnings
MW 4x8 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MW 4x8 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
21.79 km/h
(6.05 m/s)
|
0.01 J | |
| 30 mm |
37.74 km/h
(10.48 m/s)
|
0.04 J | |
| 50 mm |
48.72 km/h
(13.53 m/s)
|
0.07 J | |
| 100 mm |
68.89 km/h
(19.14 m/s)
|
0.14 J |
Table 9: Corrosion resistance
MW 4x8 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 4x8 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 836 Mx | 8.4 µWb |
| Pc Coefficient | 1.21 | High (Stable) |
Table 11: Submerged application
MW 4x8 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.35 kg | Standard |
| Water (riverbed) |
0.40 kg
(+0.05 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Warning: On a vertical surface, the magnet retains only a fraction of its nominal pull.
2. Plate thickness effect
*Thin steel (e.g. computer case) significantly limits the holding force.
3. Thermal stability
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.21
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also deals
Strengths and weaknesses of rare earth magnets.
Pros
- They do not lose strength, even after approximately ten years – the drop in lifting capacity is only ~1% (according to tests),
- Neodymium magnets are characterized by exceptionally resistant to loss of magnetic properties caused by magnetic disturbances,
- Thanks to the shiny finish, the plating of nickel, gold-plated, or silver-plated gives an elegant appearance,
- The surface of neodymium magnets generates a powerful magnetic field – this is one of their assets,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Possibility of custom shaping and modifying to atypical applications,
- Wide application in electronics industry – they serve a role in HDD drives, electromotive mechanisms, advanced medical instruments, as well as other advanced devices.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Disadvantages
- At strong impacts they can crack, therefore we advise placing them in strong housings. A metal housing provides additional protection against damage and increases the magnet's durability.
- Neodymium magnets lose their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- They rust in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- Due to limitations in realizing threads and complex forms in magnets, we recommend using a housing - magnetic mechanism.
- Potential hazard resulting from small fragments of magnets pose a threat, in case of ingestion, which becomes key in the context of child safety. Additionally, small elements of these magnets are able to disrupt the diagnostic process medical in case of swallowing.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which can limit application in large quantities
Lifting parameters
Highest magnetic holding force – what affects it?
- on a plate made of structural steel, optimally conducting the magnetic flux
- whose thickness is min. 10 mm
- with a surface cleaned and smooth
- with total lack of distance (no paint)
- under vertical application of breakaway force (90-degree angle)
- at temperature approx. 20 degrees Celsius
Impact of factors on magnetic holding capacity in practice
- Clearance – existence of any layer (rust, dirt, air) acts as an insulator, which lowers capacity rapidly (even by 50% at 0.5 mm).
- Force direction – catalog parameter refers to pulling vertically. When applying parallel force, the magnet exhibits much less (often approx. 20-30% of maximum force).
- Substrate thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet restricts the lifting capacity (the magnet "punches through" it).
- Chemical composition of the base – low-carbon steel gives the best results. Alloy admixtures decrease magnetic permeability and lifting capacity.
- Surface finish – full contact is obtained only on smooth steel. Rough texture reduce the real contact area, weakening the magnet.
- Temperature influence – high temperature weakens pulling force. Too high temperature can permanently damage the magnet.
Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under parallel forces the lifting capacity is smaller. Moreover, even a minimal clearance between the magnet’s surface and the plate decreases the load capacity.
H&S for magnets
Skin irritation risks
A percentage of the population have a hypersensitivity to Ni, which is the standard coating for NdFeB magnets. Frequent touching might lead to an allergic reaction. We recommend use protective gloves.
Protect data
Avoid bringing magnets close to a wallet, computer, or screen. The magnetic field can destroy these devices and erase data from cards.
Health Danger
For implant holders: Powerful magnets affect electronics. Keep minimum 30 cm distance or ask another person to work with the magnets.
Heat warning
Monitor thermal conditions. Exposing the magnet to high heat will ruin its magnetic structure and strength.
Compass and GPS
Be aware: rare earth magnets produce a field that interferes with precision electronics. Maintain a safe distance from your mobile, tablet, and GPS.
Conscious usage
Handle magnets consciously. Their huge power can shock even professionals. Be vigilant and respect their power.
Product not for children
Neodymium magnets are not intended for children. Eating a few magnets can lead to them pinching intestinal walls, which poses a severe health hazard and necessitates urgent medical intervention.
Protective goggles
Neodymium magnets are sintered ceramics, which means they are prone to chipping. Clashing of two magnets will cause them breaking into small pieces.
Do not drill into magnets
Mechanical processing of NdFeB material poses a fire risk. Magnetic powder reacts violently with oxygen and is difficult to extinguish.
Crushing force
Danger of trauma: The attraction force is so immense that it can cause hematomas, pinching, and even bone fractures. Protective gloves are recommended.
