MW 4x8 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010079
GTIN: 5906301810780
Diameter Ø [±0,1 mm]
4 mm
Height [±0,1 mm]
8 mm
Weight
0.75 g
Magnetization Direction
↑ axial
Load capacity
1.77 kg / 17.36 N
Magnetic Induction
599.59 mT
Coating
[NiCuNi] nickel
0.701 ZŁ with VAT / pcs + price for transport
0.570 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have problems deciding?
Give us a call
+48 888 99 98 98
otherwise contact us via
inquiry form
through our site.
Parameters as well as structure of magnets can be tested on our
force calculator.
Order by 14:00 and we’ll ship today!
MW 4x8 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They have stable power, and over nearly ten years their performance decreases symbolically – ~1% (according to theory),
- They remain magnetized despite exposure to magnetic noise,
- By applying a shiny layer of gold, the element gains a sleek look,
- They have exceptional magnetic induction on the surface of the magnet,
- Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which expands their application range,
- Key role in new technology industries – they are utilized in data storage devices, electromechanical systems, medical equipment as well as high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them useful in compact constructions
Disadvantages of neodymium magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall strength,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a wet environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of rubber,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
- Safety concern related to magnet particles may arise, in case of ingestion, which is important in the context of child safety. Additionally, small elements from these magnets can hinder health screening after being swallowed,
- Due to expensive raw materials, their cost is considerably higher,
Highest magnetic holding force – what affects it?
The given pulling force of the magnet corresponds to the maximum force, assessed in ideal conditions, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a refined outer layer
- in conditions of no clearance
- in a perpendicular direction of force
- in normal thermal conditions
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet is determined by in practice key elements, ordered from most important to least significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under shearing force the load capacity is reduced by as much as 75%. In addition, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.
We Recommend Caution with Neodymium Magnets
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets are not toys, youngest should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Do not bring neodymium magnets close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will crack or crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very strongly.
Neodymium magnets can become demagnetized at high temperatures.
Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnetic are highly susceptible to damage, resulting in breaking.
Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Caution!
To show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.
