tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid steel enclosure are ideally suited for use in variable and difficult climate conditions, including in the rain and snow see...

magnets with holders

Holders with magnets can be used to enhance production, underwater discoveries, or searching for meteorites made of ore see more...

We promise to ship ordered magnets on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SMZR 32x200 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140240

GTIN: 5906301813484

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

200 mm

Weight

1210 g

615.00 with VAT / pcs + price for transport

500.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
500.00 ZŁ
615.00 ZŁ
price from 5 pcs
440.00 ZŁ
541.20 ZŁ

Want to negotiate?

Pick up the phone and ask +48 888 99 98 98 alternatively get in touch via inquiry form the contact form page.
Force along with form of neodymium magnets can be checked using our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

SMZR 32x200 / N52 - magnetic separator with handle

Specification/characteristics SMZR 32x200 / N52 - magnetic separator with handle
properties
values
Cat. no.
140240
GTIN
5906301813484
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
1210 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The grip, typically ergonomic, enables easy operation of the separator along the work area, which significantly boosts the efficiency of the process. Their key advantages are portability, simplicity and strong efficiency in removing small ferrous fragments, such as shavings or magnetic powder.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They retain their attractive force for almost ten years – the loss is just ~1% (based on simulations),
  • Their ability to resist magnetic interference from external fields is among the best,
  • Thanks to the polished finish and gold coating, they have an visually attractive appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • With the option for customized forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Significant impact in advanced technical fields – they are utilized in HDDs, electric motors, medical equipment along with technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and strengthens its overall robustness,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment, especially when used outside, we recommend using sealed magnets, such as those made of plastic,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Possible threat from tiny pieces may arise, in case of ingestion, which is important in the protection of children. Moreover, miniature parts from these magnets might complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, measured under optimal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • at room temperature

Key elements affecting lifting force

In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the load capacity is reduced by as much as 75%. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the holding force.

Exercise Caution with Neodymium Magnets

Magnets made of neodymium are highly fragile, they easily fall apart as well as can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or in their path when attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Pay attention!

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98