e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. Practically all magnesy in our store are in stock for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnet for fishing F300 GOLD

Where to purchase strong magnet? Holders with magnets in solid and airtight enclosure are excellent for use in difficult, demanding weather, including during snow and rain more information...

magnets with holders

Magnetic holders can be applied to improve production, underwater exploration, or searching for space rocks made of ore check...

Shipping is shipped on the same day by 2:00 PM on business days.

Dhit sp. z o.o.
Product available Ships in 3 days

SMZR 32x200 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140240

GTIN: 5906301813484

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

200 mm

Weight

1210 g

615.00 with VAT / pcs + price for transport

500.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
500.00 ZŁ
615.00 ZŁ
price from 5 pcs
440.00 ZŁ
541.20 ZŁ

Want to talk magnets?

Pick up the phone and ask +48 22 499 98 98 or get in touch through contact form through our site.
Specifications and structure of neodymium magnets can be checked on our power calculator.

Order by 14:00 and we’ll ship today!

SMZR 32x200 / N52 - magnetic separator with handle

Specification/characteristics SMZR 32x200 / N52 - magnetic separator with handle
properties
values
Cat. no.
140240
GTIN
5906301813484
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
1210 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is an essential item in every scrap yard and waste sorting plant. It allows you to check if an object is ferromagnetic (steel, iron) or not (aluminum, copper, stainless steel). It is also useful for extracting small steel elements from crates, ash, or sand.
The magnet 'catches' iron but remains indifferent to aluminum, copper, and brass. If the magnet does not attract the element, it is likely a non-ferrous metal or acid-resistant steel.
The neodymium model offers powerful force with low weight, reducing arm fatigue. A lighter tool allows for longer work without wrist pain. It is a modern solution replacing heavy ferrite magnets.
The neodymium magnet is enclosed in a solid metal housing (steel or brass). The handle is designed not to slip in the hand. The tool is durable and prepared for hard work.
Standard hand separators (like SMZR 32x200 / N52) do not have a release mechanism and require manual cleaning. We also offer versions where pulling the handle drops the collected material. In the case of strong magnets, it is easiest to slide the metal to the side of the housing.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They have unchanged lifting capacity, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • Their ability to resist magnetic interference from external fields is among the best,
  • Because of the lustrous layer of nickel, the component looks high-end,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • With the option for tailored forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Key role in advanced technical fields – they find application in hard drives, electric motors, diagnostic apparatus or even technologically developed systems,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally reinforces its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can rust. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Health risk due to small fragments may arise, in case of ingestion, which is significant in the health of young users. It should also be noted that miniature parts from these devices have the potential to complicate medical imaging after being swallowed,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given pulling force of the magnet corresponds to the maximum force, determined in the best circumstances, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Practical lifting capacity: influencing factors

The lifting capacity of a magnet is determined by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the load capacity is reduced by as much as fivefold. In addition, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.

Safety Precautions

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Magnets made of neodymium are known for their fragility, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If joining of neodymium magnets is not under control, at that time they may crumble and also crack. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Exercise caution!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98