e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. All magnesy in our store are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy very strong magnet? Magnetic holders in solid and airtight steel enclosure are excellent for use in difficult, demanding climate conditions, including snow and rain see...

magnets with holders

Magnetic holders can be used to facilitate production, underwater exploration, or finding meteors from gold more...

Enjoy shipping of your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 4x6 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010078

GTIN: 5906301810773

5

Diameter Ø [±0,1 mm]

4 mm

Height [±0,1 mm]

6 mm

Weight

0.57 g

Magnetization Direction

↑ axial

Load capacity

1.33 kg / 13.04 N

Magnetic Induction

586.32 mT

Coating

[NiCuNi] nickel

0.406 with VAT / pcs + price for transport

0.330 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.330 ZŁ
0.406 ZŁ
price from 1000 pcs
0.297 ZŁ
0.365 ZŁ
price from 3360 pcs
0.290 ZŁ
0.357 ZŁ

Can't decide what to choose?

Call us +48 888 99 98 98 alternatively send us a note using request form the contact page.
Force and appearance of neodymium magnets can be reviewed on our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 4x6 / N38 - cylindrical magnet

Specification/characteristics MW 4x6 / N38 - cylindrical magnet
properties
values
Cat. no.
010078
GTIN
5906301810773
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
4 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
0.57 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.33 kg / 13.04 N
Magnetic Induction ~ ?
586.32 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 4x6 / N38 are magnets created of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which outperform traditional ferrite magnets. Because of their power, they are frequently employed in devices that need powerful holding. The standard temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet named MW 4x6 / N38 and a magnetic strength 1.33 kg weighs only 0.57 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the website for the current information and promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are very useful in various applications, they can also pose certain risk. Due to their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to crushing skin or other materials, especially be careful with fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with additional metals and then forming and thermal processing. Their unmatched magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical magnet N50 and N52 is a strong and extremely powerful metal object in the form of a cylinder, providing high force and universal applicability. Very good price, fast shipping, ruggedness and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They do not lose their magnetism, even after around 10 years – the decrease of lifting capacity is only ~1% (theoretically),
  • They are highly resistant to demagnetization caused by external magnetic fields,
  • The use of a decorative silver surface provides a eye-catching finish,
  • They have exceptional magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Significant impact in advanced technical fields – they are used in hard drives, electromechanical systems, diagnostic apparatus and other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in compact constructions

Disadvantages of NdFeB magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to shocks, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time reinforces its overall strength,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
  • Safety concern due to small fragments may arise, in case of ingestion, which is important in the context of child safety. Additionally, small elements from these magnets can complicate medical imaging once in the system,
  • In cases of tight budgets, neodymium magnet cost may be a barrier,

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given holding capacity of the magnet corresponds to the highest holding force, determined under optimal conditions, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • at room temperature

Magnet lifting force in use – key factors

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, however under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet and the plate lowers the holding force.

Handle Neodymium Magnets Carefully

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Magnets made of neodymium are particularly delicate, resulting in shattering.

Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If the joining of neodymium magnets is not controlled, then they may crumble and also crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Be careful!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98