MW 4x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010078
GTIN: 5906301810773
Diameter Ø [±0,1 mm]
4 mm
Height [±0,1 mm]
6 mm
Weight
0.57 g
Magnetization Direction
↑ axial
Load capacity
1.33 kg / 13.04 N
Magnetic Induction
586.32 mT
Coating
[NiCuNi] nickel
0.41 ZŁ with VAT / pcs + price for transport
0.33 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us now
+48 22 499 98 98
or let us know by means of
contact form
the contact form page.
Lifting power along with shape of neodymium magnets can be verified using our
modular calculator.
Order by 14:00 and we’ll ship today!
MW 4x6 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as gold, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong power, neodymium magnets have these key benefits:
- They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
- They are highly resistant to demagnetization caused by external magnetic fields,
- Thanks to the glossy finish and nickel coating, they have an elegant appearance,
- Magnetic induction on the surface of these magnets is very strong,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
- With the option for fine forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Key role in new technology industries – they are used in data storage devices, electromechanical systems, medical equipment along with other advanced devices,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall strength,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of synthetic coating for outdoor use,
- Limited ability to create internal holes in the magnet – the use of a housing is recommended,
- Health risk related to magnet particles may arise, in case of ingestion, which is crucial in the family environments. Furthermore, minuscule fragments from these products might hinder health screening once in the system,
- Due to expensive raw materials, their cost is considerably higher,
Magnetic strength at its maximum – what it depends on?
The given strength of the magnet corresponds to the optimal strength, determined in ideal conditions, specifically:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a refined outer layer
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Impact of factors on magnetic holding capacity in practice
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate decreases the holding force.
Precautions with Neodymium Magnets
Neodymium magnetic are particularly fragile, which leads to shattering.
Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
It is important to keep neodymium magnets out of reach from youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Caution!
In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.