MW 4x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010078
GTIN/EAN: 5906301810773
Diameter Ø
4 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
0.57 g
Magnetization Direction
↑ axial
Load capacity
0.41 kg / 4.06 N
Magnetic Induction
586.32 mT / 5863 Gs
Coating
[NiCuNi] Nickel
0.381 ZŁ with VAT / pcs + price for transport
0.310 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
alternatively send us a note through
inquiry form
the contact page.
Force as well as form of magnets can be calculated on our
magnetic mass calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical of the product - MW 4x6 / N38 - cylindrical magnet
Specification / characteristics - MW 4x6 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010078 |
| GTIN/EAN | 5906301810773 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 4 mm [±0,1 mm] |
| Height | 6 mm [±0,1 mm] |
| Weight | 0.57 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.41 kg / 4.06 N |
| Magnetic Induction ~ ? | 586.32 mT / 5863 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the assembly - report
Presented data are the result of a physical calculation. Results were calculated on algorithms for the material Nd2Fe14B. Actual parameters might slightly differ from theoretical values. Please consider these data as a reference point when designing systems.
Table 1: Static pull force (force vs distance) - characteristics
MW 4x6 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5852 Gs
585.2 mT
|
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
safe |
| 1 mm |
3189 Gs
318.9 mT
|
0.12 kg / 0.27 lbs
121.7 g / 1.2 N
|
safe |
| 2 mm |
1631 Gs
163.1 mT
|
0.03 kg / 0.07 lbs
31.8 g / 0.3 N
|
safe |
| 3 mm |
894 Gs
89.4 mT
|
0.01 kg / 0.02 lbs
9.6 g / 0.1 N
|
safe |
| 5 mm |
343 Gs
34.3 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
safe |
| 10 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
| 15 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 20 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Shear load (vertical surface)
MW 4x6 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - vertical pull
MW 4x6 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.12 kg / 0.27 lbs
123.0 g / 1.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 0.09 lbs
41.0 g / 0.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.21 kg / 0.45 lbs
205.0 g / 2.0 N
|
Table 4: Steel thickness (substrate influence) - power losses
MW 4x6 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 0.09 lbs
41.0 g / 0.4 N
|
| 1 mm |
|
0.10 kg / 0.23 lbs
102.5 g / 1.0 N
|
| 2 mm |
|
0.21 kg / 0.45 lbs
205.0 g / 2.0 N
|
| 3 mm |
|
0.31 kg / 0.68 lbs
307.5 g / 3.0 N
|
| 5 mm |
|
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
| 10 mm |
|
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
| 11 mm |
|
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
| 12 mm |
|
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
Table 5: Thermal stability (material behavior) - power drop
MW 4x6 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
OK |
| 40 °C | -2.2% |
0.40 kg / 0.88 lbs
401.0 g / 3.9 N
|
OK |
| 60 °C | -4.4% |
0.39 kg / 0.86 lbs
392.0 g / 3.8 N
|
OK |
| 80 °C | -6.6% |
0.38 kg / 0.84 lbs
382.9 g / 3.8 N
|
|
| 100 °C | -28.8% |
0.29 kg / 0.64 lbs
291.9 g / 2.9 N
|
Table 6: Two magnets (attraction) - forces in the system
MW 4x6 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.65 kg / 5.85 lbs
6 085 Gs
|
0.40 kg / 0.88 lbs
398 g / 3.9 N
|
N/A |
| 1 mm |
1.51 kg / 3.34 lbs
8 844 Gs
|
0.23 kg / 0.50 lbs
227 g / 2.2 N
|
1.36 kg / 3.01 lbs
~0 Gs
|
| 2 mm |
0.79 kg / 1.74 lbs
6 377 Gs
|
0.12 kg / 0.26 lbs
118 g / 1.2 N
|
0.71 kg / 1.56 lbs
~0 Gs
|
| 3 mm |
0.40 kg / 0.88 lbs
4 541 Gs
|
0.06 kg / 0.13 lbs
60 g / 0.6 N
|
0.36 kg / 0.79 lbs
~0 Gs
|
| 5 mm |
0.11 kg / 0.24 lbs
2 388 Gs
|
0.02 kg / 0.04 lbs
17 g / 0.2 N
|
0.10 kg / 0.22 lbs
~0 Gs
|
| 10 mm |
0.01 kg / 0.02 lbs
687 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
145 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - warnings
MW 4x6 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MW 4x6 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
27.05 km/h
(7.51 m/s)
|
0.02 J | |
| 30 mm |
46.85 km/h
(13.01 m/s)
|
0.05 J | |
| 50 mm |
60.48 km/h
(16.80 m/s)
|
0.08 J | |
| 100 mm |
85.53 km/h
(23.76 m/s)
|
0.16 J |
Table 9: Corrosion resistance
MW 4x6 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 4x6 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 792 Mx | 7.9 µWb |
| Pc Coefficient | 1.09 | High (Stable) |
Table 11: Hydrostatics and buoyancy
MW 4x6 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.41 kg | Standard |
| Water (riverbed) |
0.47 kg
(+0.06 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Note: On a vertical wall, the magnet holds only approx. 20-30% of its nominal pull.
2. Steel thickness impact
*Thin metal sheet (e.g. computer case) severely weakens the holding force.
3. Thermal stability
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.09
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Strengths as well as weaknesses of rare earth magnets.
Benefits
- They virtually do not lose power, because even after 10 years the performance loss is only ~1% (according to literature),
- Neodymium magnets are distinguished by highly resistant to demagnetization caused by external magnetic fields,
- A magnet with a shiny gold surface has an effective appearance,
- They show high magnetic induction at the operating surface, which improves attraction properties,
- Through (appropriate) combination of ingredients, they can achieve high thermal resistance, enabling operation at temperatures approaching 230°C and above...
- Due to the possibility of accurate molding and customization to specialized needs, magnetic components can be produced in a wide range of forms and dimensions, which increases their versatility,
- Fundamental importance in high-tech industry – they find application in data components, electromotive mechanisms, medical equipment, and industrial machines.
- Relatively small size with high pulling force – neodymium magnets offer high power in tiny dimensions, which enables their usage in miniature devices
Disadvantages
- They are fragile upon too strong impacts. To avoid cracks, it is worth protecting magnets using a steel holder. Such protection not only protects the magnet but also improves its resistance to damage
- Neodymium magnets decrease their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material immune to moisture, in case of application outdoors
- Limited ability of producing threads in the magnet and complicated forms - preferred is casing - mounting mechanism.
- Possible danger related to microscopic parts of magnets are risky, when accidentally swallowed, which gains importance in the context of child safety. Additionally, small elements of these devices are able to disrupt the diagnostic process medical when they are in the body.
- Due to complex production process, their price is relatively high,
Holding force characteristics
Detachment force of the magnet in optimal conditions – what it depends on?
- with the use of a sheet made of low-carbon steel, ensuring full magnetic saturation
- with a cross-section no less than 10 mm
- with an polished touching surface
- with zero gap (without coatings)
- during pulling in a direction vertical to the plane
- at ambient temperature approx. 20 degrees Celsius
Determinants of lifting force in real conditions
- Space between surfaces – even a fraction of a millimeter of separation (caused e.g. by veneer or dirt) diminishes the magnet efficiency, often by half at just 0.5 mm.
- Load vector – highest force is obtained only during perpendicular pulling. The shear force of the magnet along the plate is typically several times lower (approx. 1/5 of the lifting capacity).
- Steel thickness – insufficiently thick sheet causes magnetic saturation, causing part of the power to be escaped to the other side.
- Steel grade – ideal substrate is high-permeability steel. Stainless steels may attract less.
- Surface structure – the smoother and more polished the plate, the better the adhesion and stronger the hold. Unevenness creates an air distance.
- Temperature – heating the magnet results in weakening of force. It is worth remembering the maximum operating temperature for a given model.
Lifting capacity was measured with the use of a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under attempts to slide the magnet the lifting capacity is smaller. In addition, even a small distance between the magnet’s surface and the plate reduces the lifting capacity.
Safety rules for work with neodymium magnets
Material brittleness
NdFeB magnets are sintered ceramics, which means they are prone to chipping. Impact of two magnets will cause them shattering into shards.
Phone sensors
Navigation devices and mobile phones are extremely sensitive to magnetic fields. Close proximity with a powerful NdFeB magnet can ruin the internal compass in your phone.
Allergic reactions
Certain individuals experience a contact allergy to nickel, which is the standard coating for NdFeB magnets. Extended handling may cause a rash. It is best to use protective gloves.
Pinching danger
Pinching hazard: The attraction force is so great that it can result in hematomas, pinching, and even bone fractures. Protective gloves are recommended.
Pacemakers
Life threat: Strong magnets can turn off pacemakers and defibrillators. Do not approach if you have electronic implants.
Handling rules
Before use, read the rules. Uncontrolled attraction can break the magnet or hurt your hand. Be predictive.
Machining danger
Powder generated during machining of magnets is flammable. Do not drill into magnets unless you are an expert.
Threat to electronics
Very strong magnetic fields can destroy records on credit cards, hard drives, and storage devices. Stay away of min. 10 cm.
Power loss in heat
Monitor thermal conditions. Heating the magnet above 80 degrees Celsius will ruin its properties and strength.
This is not a toy
These products are not intended for children. Swallowing several magnets may result in them connecting inside the digestive tract, which poses a direct threat to life and necessitates urgent medical intervention.
