tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. All "magnets" in our store are available for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for fishing F300 GOLD

Where to buy strong magnet? Magnet holders in airtight and durable enclosure are perfect for use in difficult weather, including in the rain and snow more information...

magnets with holders

Magnetic holders can be applied to facilitate production processes, underwater exploration, or searching for space rocks from gold check...

We promise to ship your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x375 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130462

GTIN: 5906301813330

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

375 mm

Weight

2075 g

1 193.10 with VAT / pcs + price for transport

970.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
970.00 ZŁ
1 193.10 ZŁ
price from 5 pcs
873.00 ZŁ
1 073.79 ZŁ

Not sure about your choice?

Call us now +48 888 99 98 98 otherwise let us know using inquiry form our website.
Strength along with form of magnetic components can be estimated with our power calculator.

Orders submitted before 14:00 will be dispatched today!

SM 32x375 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x375 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130462
GTIN
5906301813330
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
375 mm [±0,1 mm]
Weight
2075 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are embedded in a casing made of stainless steel mostly AISI304. In this way, it is possible to efficiently segregate ferromagnetic particles from the mixture. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made from ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in food production for the elimination of metallic contaminants, including iron fragments or iron dust. Our rollers are constructed from durable acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, otherwise cylindrical magnets, find application in metal separation, food production as well as waste processing. They help in extracting iron dust during the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets placed in a tube of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the stronger the magnet, the more efficient it is. But, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are more compressed. On the other hand, in the case of a thicker magnet, the force lines will be longer and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, usually stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel is highly recommended thanks to its outstanding corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their superior holding force, neodymium magnets have these key benefits:

  • They have stable power, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • They are highly resistant to demagnetization caused by external magnetic fields,
  • Thanks to the shiny finish and nickel coating, they have an visually attractive appearance,
  • Magnetic induction on the surface of these magnets is notably high,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • The ability for precise shaping as well as adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Wide application in advanced technical fields – they serve a purpose in hard drives, electric drives, medical equipment and high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a powerful impact. If the magnets are exposed to external force, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and increases its overall robustness,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
  • Health risk linked to microscopic shards may arise, when consumed by mistake, which is crucial in the context of child safety. Moreover, small elements from these assemblies can hinder health screening once in the system,
  • Due to expensive raw materials, their cost is relatively high,

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given strength of the magnet means the optimal strength, calculated in ideal conditions, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Determinants of lifting force in real conditions

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.

We Recommend Caution with Neodymium Magnets

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Neodymium magnets are delicate as well as can easily break and get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Magnets are not toys, youngest should not play with them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98