tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to buy very strong magnet? Magnetic holders in solid and airtight steel casing are excellent for use in challenging weather conditions, including snow and rain more information...

magnets with holders

Holders with magnets can be applied to improve manufacturing, underwater exploration, or finding meteors made of ore more...

Shipping is shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

SM 32x375 [2xM8] / N52 - magnetic roller

magnetic separator

catalog number 130462

GTIN: 5906301813330

5.0

diameter Ø

32 mm [±0,1 mm]

height

375 mm [±0,1 mm]

max. temperature

≤ 80 °C

1193.10 PLN gross price (including VAT) / pcs +

970.00 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
970.00 PLN
1193.10 PLN
price from 3 pcs
921.50 PLN
1133.44 PLN
price from 5 pcs
873.00 PLN
1073.79 PLN

Do you have difficulties in choosing?

Call us tel: +48 22 499 98 98 or get in touch via contact form on our website. You can check the power as well as the appearance of magnet in our force calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 32x375 [2xM8] / N52

Characteristics: magnetic separator 32x375 [2xM8] / N52
Properties
Values
catalog number
130462
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
32 mm [±0,1 mm]
height
375 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
2075.00 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N52
ilość gwintów
2x [M8] wewnętrzne
biegunowość
obwodowa - 14 nadbiegunników
indukcja magnetyczna
~ 10 000 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N52

material characteristics N52
Properties
Values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
48-53
BH max MGOe
energy density [Min. - Max.]
380-422
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are embedded in a casing made of stainless steel mostly AISI304. In this way, it is possible to effectively separate ferromagnetic particles from different substances. A fundamental component of its operation is the use of repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be collected. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are used to extract ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in the food sector to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are built from durable acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, otherwise magnetic separators, are used in metal separation, food production as well as waste processing. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets anchored in a tube made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 and N52.
Usually it is believed that the stronger the magnet, the more effective. But, the effectiveness of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines are more compressed. By contrast, in the case of a thicker magnet, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, frequently stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, AISI 316 steel exhibits the best resistance thanks to its excellent anti-corrosion properties.
Magnetic rollers are characterized by their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, it is advised {to clean them regularly from contaminants, avoid extreme temperatures above 80 degrees, and to clean them regularly, avoiding temperatures up to 80°C. The rollers have an IP67 waterproof rating, so if they are not watertight, the magnets inside may rust and lose their strength. Magnetic field measurements are recommended to be conducted once every 24 months. Care should be taken as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it can be worn down, which, in turn, may lead to issues with the magnetic rod becoming unsealed and product contamination. The effective operating range of the roller equals its diameter, fi25mm is approximately 25mm active range, while fi32 is about 40mm.

Recommended articles for purchase

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Significant importance in modern technologies – are used in hard drives, electric motors, medical apparatus or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets can be dangerous, if swallowed, which is crucial in the aspect of protecting young children. Additionally, miniscule components of these devices have the potential to be problematic in medical diagnosis in case of swallowing.

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are characterized by their fragility, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

  Magnets are not toys, youngest should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

If have a finger between or on the path of attracting magnets, there may be a serious cut or even a fracture.

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98