tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. All magnesy neodymowe on our website are available for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnets for fishing F300 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in solid and airtight steel enclosure are ideally suited for use in difficult weather conditions, including during snow and rain read...

magnetic holders

Holders with magnets can be applied to enhance production, exploring underwater areas, or locating meteorites made of metal see...

Shipping is always shipped if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x375 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130462

GTIN: 5906301813330

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

375 mm

Weight

2075 g

1193.10 with VAT / pcs + price for transport

970.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
970.00 ZŁ
1193.10 ZŁ
price from 5 pcs
873.00 ZŁ
1073.79 ZŁ

Want to talk magnets?

Contact us by phone +48 22 499 98 98 alternatively drop us a message through form the contact page.
Strength as well as structure of neodymium magnets can be checked with our force calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x375 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x375 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130462
GTIN
5906301813330
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
375 mm [±0,1 mm]
Weight
2075 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are embedded in a construction made of stainless steel mostly AISI304. Due to this, it is possible to effectively separate ferromagnetic particles from other materials. An important element of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be attracted. The thickness of the embedded magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic particles. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in food production to clear metallic contaminants, for example iron fragments or iron dust. Our rods are constructed from acid-resistant steel, AISI 304, suitable for use in food.
Magnetic rollers, otherwise magnetic separators, are employed in food production, metal separation as well as waste processing. They help in removing iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets anchored in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the greater the magnet's power, the more efficient it is. But, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are more compressed. Otherwise, when the magnet is thick, the force lines will be extended and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, usually stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel is recommended thanks to its excellent anti-corrosion properties.
Magnetic rollers are characterized by their specific arrangement of poles and their capability to attract magnetic substances directly onto their surface, as opposed to other separators that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it is recommended cleaning regularly, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out every two years. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetism, neodymium magnets have these key benefits:

  • They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (according to literature),
  • They remain magnetized despite exposure to magnetic noise,
  • In other words, due to the shiny nickel coating, the magnet obtains an professional appearance,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for precise shaping as well as adjustment to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Wide application in cutting-edge sectors – they are used in HDDs, electric drives, clinical machines or even other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture while also reinforces its overall durability,
  • They lose magnetic force at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
  • Health risk linked to microscopic shards may arise, when consumed by mistake, which is crucial in the family environments. Moreover, tiny components from these assemblies can hinder health screening once in the system,
  • In cases of tight budgets, neodymium magnet cost is a challenge,

Maximum lifting force for a neodymium magnet – what contributes to it?

The given strength of the magnet represents the optimal strength, determined under optimal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Determinants of lifting force in real conditions

In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, however under parallel forces the holding force is lower. Moreover, even a minimal clearance {between} the magnet and the plate decreases the load capacity.

Exercise Caution with Neodymium Magnets

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

 Keep neodymium magnets away from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnetic are especially delicate, resulting in shattering.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If have a finger between or on the path of attracting magnets, there may be a severe cut or a fracture.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Be careful!

To show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98