tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. Practically all "neodymium magnets" in our store are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F400 GOLD

Where to buy very strong magnet? Magnetic holders in airtight, solid enclosure are excellent for use in difficult weather conditions, including during snow and rain check...

magnets with holders

Holders with magnets can be used to facilitate production processes, exploring underwater areas, or finding space rocks from gold check...

We promise to ship your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x375 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130462

GTIN: 5906301813330

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

375 mm

Weight

2075 g

1 193.10 with VAT / pcs + price for transport

970.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
970.00 ZŁ
1 193.10 ZŁ
price from 3 pcs
921.50 ZŁ
1 133.44 ZŁ
price from 5 pcs
873.00 ZŁ
1 073.79 ZŁ

Need advice?

Contact us by phone +48 22 499 98 98 alternatively send us a note via contact form the contact section.
Lifting power and form of a magnet can be tested with our power calculator.

Order by 14:00 and we’ll ship today!

SM 32x375 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x375 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130462
GTIN
5906301813330
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
375 mm [±0,1 mm]
Weight
2075 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. As a result, it is possible to precisely remove ferromagnetic particles from different substances. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be attracted. The thickness of the magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are used to extract ferromagnetic particles. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are built from durable acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, often called magnetic separators, find application in metal separation, food production as well as recycling. They help in extracting iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with a neodymium magnet placed in a tube of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the stronger the magnet, the better. Nevertheless, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. Otherwise, in the case of a thicker magnet, the force lines are longer and reach further.
For making the casings of magnetic separators - rollers, frequently stainless steel is utilized, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel exhibits the best resistance thanks to its exceptional corrosion resistance.
Magnetic rollers stand out for their specific arrangement of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it is recommended cleaning after each use, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can rust and weaken. Magnetic field measurements is recommended be carried out every two years. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They have stable power, and over around ten years their attraction force decreases symbolically – ~1% (according to theory),
  • They protect against demagnetization induced by ambient magnetic fields remarkably well,
  • Thanks to the shiny finish and silver coating, they have an visually attractive appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in advanced technical fields – they serve a purpose in hard drives, electric motors, clinical machines and high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall resistance,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is important in the protection of children. Moreover, small elements from these devices may hinder health screening once in the system,
  • Due to a complex production process, their cost is above average,

Handle with Care: Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are characterized by being fragile, which can cause them to become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or alternatively crumble with uncontrolled connecting to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are the strongest magnets ever invented. Their power can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Safety precautions!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98