tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are in stock for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for fishing F200 GOLD

Where to buy strong magnet? Holders with magnets in airtight and durable steel casing are ideally suited for use in difficult climate conditions, including snow and rain see more...

magnetic holders

Magnetic holders can be used to facilitate production, exploring underwater areas, or locating space rocks from gold more information...

Enjoy delivery of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 650x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090222

GTIN: 5906301812579

5

length [±0,1 mm]

650 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

41750 g

6131.43 with VAT / pcs + price for transport

4984.90 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
4984.90 ZŁ
6131.43 ZŁ
price from 5 pcs
4685.81 ZŁ
5763.54 ZŁ

Hunting for a discount?

Call us now +48 22 499 98 98 alternatively drop us a message using our online form our website.
Specifications along with shape of a neodymium magnet can be checked with our online calculation tool.

Orders submitted before 14:00 will be dispatched today!

BM 650x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 650x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090222
GTIN
5906301812579
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
650 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
41750 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which are based on strong neodymium magnets to capture unwanted iron elements. Any metal parts are attracted to the underside of the beam. The use of such beams is particularly common in recycling, mineral raw materials and other industrial sectors.
The dimensions of the magnetic beam are tailored to the width of the belt and the magnetic field range. The larger the cross-section of the beam, the greater the magnetic field range. For example, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. We also manufacture magnetic beams made to order according to customer requirements.
The magnetic beam works due to the use of neodymium magnets, which create a field capable of attracting iron contaminants. Metal objects are lifted and attach to the underside of the beam. Mounted at the right angle, it can function as a chute separator. The stainless steel housing protects the magnets, the device is durable and reliable in harsh industrial conditions.
These devices are used for removing any iron contaminants, such as metal balls, bolts and nuts, metal items, such as nails or keys. The range of the beam's action depends on its magnetic parameters and cross-section. These devices are indispensable in many industrial sectors where removing iron contaminants is critical.
Magnetic beams are indispensable in industry due to their effectiveness in metal separation, especially in industrial sectors requiring precise contaminant separation. Thanks to their design and strong neodymium magnets ensure high reliability and work efficiency. Additionally, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They retain their magnetic properties for around ten years – the loss is just ~1% (in theory),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a mirror-like gold surface provides a refined finish,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
  • Wide application in modern technologies – they are used in HDDs, rotating machines, diagnostic apparatus as well as technologically developed systems,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
  • Possible threat linked to microscopic shards may arise, when consumed by mistake, which is important in the context of child safety. Furthermore, small elements from these devices may interfere with diagnostics when ingested,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Maximum holding power of the magnet – what contributes to it?

The given strength of the magnet represents the optimal strength, determined in the best circumstances, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • under standard ambient temperature

Determinants of lifting force in real conditions

In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.

Safety Precautions

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Neodymium magnets are characterized by their fragility, which can cause them to crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will crack or alternatively crumble with uncontrolled connecting to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very strongly.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Safety rules!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98