tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our offer. All "neodymium magnets" on our website are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in solid and airtight steel enclosure are perfect for use in challenging climate conditions, including in the rain and snow check...

magnetic holders

Holders with magnets can be applied to improve production, underwater discoveries, or locating meteors from gold see...

Enjoy delivery of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 45x35 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010074

GTIN: 5906301810735

0

Diameter Ø [±0,1 mm]

45 mm

Height [±0,1 mm]

35 mm

Weight

417.49 g

Magnetization Direction

↑ axial

Load capacity

87.09 kg / 854.06 N

Magnetic Induction

521.39 mT

Coating

[NiCuNi] nickel

217.00 with VAT / pcs + price for transport

176.42 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
176.42 ZŁ
217.00 ZŁ
price from 4 pcs
165.83 ZŁ
203.98 ZŁ
price from 15 pcs
155.25 ZŁ
190.96 ZŁ

Looking for a better price?

Give us a call +48 22 499 98 98 if you prefer send us a note via inquiry form our website.
Force as well as appearance of a neodymium magnet can be calculated on our force calculator.

Same-day shipping for orders placed before 14:00.

MW 45x35 / N38 - cylindrical magnet

Specification/characteristics MW 45x35 / N38 - cylindrical magnet
properties
values
Cat. no.
010074
GTIN
5906301810735
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
45 mm [±0,1 mm]
Height
35 mm [±0,1 mm]
Weight
417.49 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
87.09 kg / 854.06 N
Magnetic Induction ~ ?
521.39 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 45x35 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which outperform traditional iron magnets. Because of their power, they are frequently employed in devices that require powerful holding. The typical temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet named MW 45x35 / N38 with a magnetic force 87.09 kg weighs only 417.49 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of gold-nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the site for the current information as well as promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are very useful in many applications, they can also constitute certain risk. Due to their strong magnetic power, they can pull metallic objects with great force, which can lead to damaging skin as well as other materials, especially hands. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with other metals and then forming and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to shield them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A cylindrical magnet in classes N52 and N50 is a strong and extremely powerful metal object shaped like a cylinder, providing high force and broad usability. Attractive price, availability, ruggedness and versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • Their strength remains stable, and after around ten years, it drops only by ~1% (according to research),
  • They are highly resistant to demagnetization caused by external field interference,
  • By applying a reflective layer of silver, the element gains a clean look,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which increases their functional possibilities,
  • Important function in modern technologies – they are used in hard drives, electromechanical systems, diagnostic apparatus and sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall resistance,
  • They lose strength at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Possible threat related to magnet particles may arise, especially if swallowed, which is important in the protection of children. Additionally, small elements from these products may complicate medical imaging if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Handle Neodymium Magnets Carefully

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 It is important to keep neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are characterized by being fragile, which can cause them to become damaged.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, are able even cut off a finger or there can be a severe pressure or a fracture.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Exercise caution!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98