MW 45x35 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010074
GTIN: 5906301810735
Diameter Ø [±0,1 mm]
45 mm
Height [±0,1 mm]
35 mm
Weight
417.49 g
Magnetization Direction
↑ axial
Load capacity
87.09 kg / 854.06 N
Magnetic Induction
521.39 mT
Coating
[NiCuNi] nickel
180.10 ZŁ with VAT / pcs + price for transport
146.42 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Pick up the phone and ask
+48 22 499 98 98
alternatively let us know using
our online form
through our site.
Specifications as well as appearance of magnets can be tested on our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
MW 45x35 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as nickel, to preserve them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous strength, neodymium magnets offer the following advantages:
- Their power is maintained, and after around ten years, it drops only by ~1% (according to research),
- Their ability to resist magnetic interference from external fields is impressive,
- Thanks to the polished finish and gold coating, they have an visually attractive appearance,
- The outer field strength of the magnet shows advanced magnetic properties,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Key role in new technology industries – they serve a purpose in hard drives, rotating machines, diagnostic apparatus along with high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of magnetic elements:
- They may fracture when subjected to a strong impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall robustness,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to wet conditions can corrode. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is restricted,
- Potential hazard from tiny pieces may arise, in case of ingestion, which is notable in the family environments. Moreover, miniature parts from these assemblies have the potential to disrupt scanning if inside the body,
- Due to expensive raw materials, their cost is relatively high,
Breakaway strength of the magnet in ideal conditions – what affects it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, assessed in the best circumstances, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- in conditions of no clearance
- in a perpendicular direction of force
- in normal thermal conditions
Practical lifting capacity: influencing factors
The lifting capacity of a magnet is determined by in practice key elements, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured with the use of a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.
Caution with Neodymium Magnets
It is essential to keep neodymium magnets out of reach from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnetic are especially fragile, which leads to damage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets jump and touch each other mutually within a distance of several to almost 10 cm from each other.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Exercise caution!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.