tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for searching F200 GOLD

Where to buy strong magnet? Magnetic holders in airtight and durable enclosure are perfect for use in challenging weather conditions, including during snow and rain more...

magnetic holders

Magnetic holders can be applied to facilitate manufacturing, underwater discoveries, or locating space rocks from gold more information...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x350 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130461

GTIN: 5906301813323

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

350 mm

Weight

1940 g

1 119.30 with VAT / pcs + price for transport

910.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
910.00 ZŁ
1 119.30 ZŁ
price from 5 pcs
819.00 ZŁ
1 007.37 ZŁ

Looking for a better price?

Pick up the phone and ask +48 888 99 98 98 otherwise contact us using inquiry form the contact section.
Weight as well as appearance of a neodymium magnet can be calculated on our online calculation tool.

Same-day shipping for orders placed before 14:00.

SM 32x350 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x350 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130461
GTIN
5906301813323
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
350 mm [±0,1 mm]
Weight
1940 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are placed in a casing made of stainless steel mostly AISI304. In this way, it is possible to precisely segregate ferromagnetic particles from the mixture. An important element of its operation is the use of repulsion of magnetic poles N and S, which enables magnetic substances to be collected. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to separate ferromagnetic elements. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are used in the food sector to clear metallic contaminants, including iron fragments or iron dust. Our rollers are constructed from acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, otherwise magnetic separators, find application in metal separation, food production as well as waste processing. They help in extracting iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are composed of a neodymium magnet embedded in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the stronger the magnet, the more effective. Nevertheless, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines are short. Otherwise, in the case of a thicker magnet, the force lines will be extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, most often stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, type AISI 316 steel exhibits the best resistance due to its outstanding anti-corrosion properties.
Magnetic rollers stand out for their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, it is recommended cleaning regularly, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements is recommended be carried out every two years. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • Their power remains stable, and after approximately ten years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is among the best,
  • By applying a reflective layer of gold, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is very strong,
  • With the right combination of magnetic alloys, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for fine forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Wide application in advanced technical fields – they find application in data storage devices, electric motors, medical equipment as well as high-tech tools,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall robustness,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
  • Potential hazard from tiny pieces may arise, when consumed by mistake, which is crucial in the protection of children. Furthermore, minuscule fragments from these products have the potential to complicate medical imaging after being swallowed,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Maximum lifting force for a neodymium magnet – what affects it?

The given pulling force of the magnet means the maximum force, determined in a perfect environment, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a slight gap {between} the magnet and the plate decreases the lifting capacity.

Safety Precautions

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets will crack or alternatively crumble with careless connecting to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

  Neodymium magnets should not be in the vicinity children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnetic are known for their fragility, which can cause them to crumble.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Safety rules!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98