tel: +48 22 499 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. Practically all magnesy on our website are available for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy very strong neodymium magnet? Magnetic holders in airtight and durable enclosure are ideally suited for use in difficult, demanding weather, including during rain and snow check...

magnets with holders

Magnetic holders can be used to improve production processes, exploring underwater areas, or searching for meteors made of ore see more...

Enjoy shipping of your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x350 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130461

GTIN: 5906301813323

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

350 mm

Weight

1940 g

1 119.30 with VAT / pcs + price for transport

910.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
910.00 ZŁ
1 119.30 ZŁ
price from 5 pcs
819.00 ZŁ
1 007.37 ZŁ

Not sure about your choice?

Give us a call +48 888 99 98 98 if you prefer contact us through form the contact form page.
Weight and structure of neodymium magnets can be checked using our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SM 32x350 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x350 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130461
GTIN
5906301813323
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
350 mm [±0,1 mm]
Weight
1940 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. As a result, it is possible to effectively segregate ferromagnetic elements from other materials. A fundamental component of its operation is the use of repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are used to extract ferromagnetic particles. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in the food sector for the elimination of metallic contaminants, including iron fragments or iron dust. Our rods are made from acid-resistant steel, EN 1.4301, intended for use in food.
Magnetic rollers, often called cylindrical magnets, are employed in metal separation, food production as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets anchored in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the greater the magnet's power, the better. But, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are more compressed. Otherwise, when the magnet is thick, the force lines will be extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, most often stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a saltwater environment, type AISI 316 steel is recommended thanks to its excellent anti-corrosion properties.
Magnetic bars are characterized by their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other separators that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, it’s worth cleaning after each use, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out every two years. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional magnetic power, neodymium magnets offer the following advantages:

  • Their magnetic field is maintained, and after approximately ten years, it drops only by ~1% (theoretically),
  • They protect against demagnetization induced by ambient magnetic influence effectively,
  • In other words, due to the glossy nickel coating, the magnet obtains an professional appearance,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their application range,
  • Important function in modern technologies – they serve a purpose in HDDs, rotating machines, medical equipment along with technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them useful in miniature devices

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and reinforces its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can corrode. Therefore, for outdoor applications, we advise waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
  • Safety concern from tiny pieces may arise, in case of ingestion, which is important in the health of young users. Additionally, tiny components from these products might complicate medical imaging after being swallowed,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Best holding force of the magnet in ideal parameterswhat affects it?

The given holding capacity of the magnet represents the highest holding force, measured under optimal conditions, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • at room temperature

Key elements affecting lifting force

The lifting capacity of a magnet depends on in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the holding force is lower. Additionally, even a small distance {between} the magnet and the plate reduces the load capacity.

Be Cautious with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

 Maintain neodymium magnets away from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets made of neodymium are delicate as well as can easily crack as well as get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will crack or alternatively crumble with careless joining to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

Caution!

In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98