SM 32x350 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130461
GTIN: 5906301813323
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
350 mm
Weight
1940 g
1119.30 ZŁ with VAT / pcs + price for transport
910.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Contact us by phone
+48 22 499 98 98
otherwise contact us through
form
through our site.
Specifications along with shape of magnets can be calculated with our
power calculator.
Same-day processing for orders placed before 14:00.
SM 32x350 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- Their strength remains stable, and after around 10 years, it drops only by ~1% (theoretically),
- They are extremely resistant to demagnetization caused by external magnetic fields,
- In other words, due to the metallic gold coating, the magnet obtains an professional appearance,
- The outer field strength of the magnet shows remarkable magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for fine forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Wide application in modern technologies – they are utilized in HDDs, electromechanical systems, medical equipment or even other advanced devices,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of rare earth magnets:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall strength,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
- Limited ability to create threads in the magnet – the use of a external casing is recommended,
- Potential hazard due to small fragments may arise, if ingested accidentally, which is significant in the family environments. Additionally, small elements from these products have the potential to disrupt scanning after being swallowed,
- In cases of mass production, neodymium magnet cost is a challenge,
Maximum lifting capacity of the magnet – what it depends on?
The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in a perfect environment, that is:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in real conditions – factors
The lifting capacity of a magnet depends on in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, whereas under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.
Handle Neodymium Magnets with Caution
Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Neodymium magnets jump and touch each other mutually within a radius of several to around 10 cm from each other.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets are not toys, youngest should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnetic are incredibly delicate, they easily crack and can crumble.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Safety precautions!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
