tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" on our website are available for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight, solid steel casing are perfect for use in difficult, demanding weather conditions, including snow and rain read...

magnets with holders

Holders with magnets can be applied to enhance production, exploring underwater areas, or finding meteors from gold more information...

Shipping is shipped on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 12x1 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010015

GTIN: 5906301810148

5

Diameter Ø [±0,1 mm]

12 mm

Height [±0,1 mm]

1 mm

Weight

0.85 g

Magnetization Direction

↑ axial

Load capacity

0.66 kg / 6.47 N

Magnetic Induction

101.90 mT

Coating

[NiCuNi] nickel

0.578 with VAT / pcs + price for transport

0.470 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.470 ZŁ
0.578 ZŁ
price from 1920 pcs
0.423 ZŁ
0.520 ZŁ
price from 3840 pcs
0.414 ZŁ
0.509 ZŁ

Want to talk magnets?

Call us now +48 22 499 98 98 otherwise contact us via our online form the contact form page.
Strength and structure of a magnet can be calculated on our force calculator.

Orders submitted before 14:00 will be dispatched today!

MW 12x1 / N38 - cylindrical magnet

Specification/characteristics MW 12x1 / N38 - cylindrical magnet
properties
values
Cat. no.
010015
GTIN
5906301810148
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
12 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.85 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.66 kg / 6.47 N
Magnetic Induction ~ ?
101.90 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 12x1 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which outperform ordinary ferrite magnets. Thanks to their power, they are often used in products that require strong adhesion. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet designated MW 12x1 / N38 with a magnetic lifting capacity of 0.66 kg weighs only 0.85 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the current information as well as offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very practical in various applications, they can also constitute certain dangers. Due to their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to crushing skin as well as other materials, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with other metals and then shaping and heat treating. Their unmatched magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as epoxy, to protect them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A neodymium magnet in classes N52 and N50 is a powerful and highly strong metallic component with the shape of a cylinder, that offers high force and versatile application. Attractive price, availability, resistance and broad range of uses.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They retain their full power for around ten years – the drop is just ~1% (according to analyses),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Because of the brilliant layer of gold, the component looks visually appealing,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Important function in advanced technical fields – they serve a purpose in computer drives, rotating machines, medical equipment along with high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and additionally strengthens its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
  • Health risk linked to microscopic shards may arise, when consumed by mistake, which is notable in the context of child safety. It should also be noted that small elements from these assemblies might complicate medical imaging if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Best holding force of the magnet in ideal parameterswhat affects it?

The given lifting capacity of the magnet represents the maximum lifting force, measured in the best circumstances, that is:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under perpendicular forces, however under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet and the plate lowers the load capacity.

Precautions

 It is important to maintain neodymium magnets out of reach from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a serious pressure or even a fracture.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are especially delicate, which leads to shattering.

Magnets made of neodymium are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Safety precautions!

To show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98