MW 12x1 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010015
GTIN: 5906301810148
Diameter Ø [±0,1 mm]
12 mm
Height [±0,1 mm]
1 mm
Weight
0.85 g
Magnetization Direction
↑ axial
Load capacity
0.66 kg / 6.47 N
Magnetic Induction
101.90 mT
Coating
[NiCuNi] nickel
0.58 ZŁ with VAT / pcs + price for transport
0.47 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us now
+48 888 99 98 98
alternatively contact us via
our online form
the contact page.
Lifting power along with shape of neodymium magnets can be verified on our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
MW 12x1 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as silver, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their consistent holding force, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (according to literature),
- They are very resistant to demagnetization caused by external magnetic fields,
- Thanks to the shiny finish and gold coating, they have an elegant appearance,
- They have extremely strong magnetic induction on the surface of the magnet,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Key role in cutting-edge sectors – they serve a purpose in HDDs, electric motors, healthcare devices as well as high-tech tools,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of neodymium magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall robustness,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing threads directly in the magnet,
- Health risk linked to microscopic shards may arise, when consumed by mistake, which is crucial in the protection of children. Furthermore, tiny components from these magnets can disrupt scanning when ingested,
- In cases of tight budgets, neodymium magnet cost may not be economically viable,
Maximum magnetic pulling force – what affects it?
The given pulling force of the magnet means the maximum force, assessed under optimal conditions, specifically:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
Lifting capacity in real conditions – factors
Practical lifting force is determined by factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate decreases the holding force.
Caution with Neodymium Magnets
Magnets made of neodymium are known for being fragile, which can cause them to shatter.
Neodymium magnets are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Maintain neodymium magnets far from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets jump and touch each other mutually within a distance of several to around 10 cm from each other.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Warning!
In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.