MW 4x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010075
GTIN/EAN: 5906301810742
Diameter Ø
4 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
0.94 g
Magnetization Direction
↑ axial
Load capacity
0.32 kg / 3.16 N
Magnetic Induction
606.05 mT / 6061 Gs
Coating
[NiCuNi] Nickel
0.800 ZŁ with VAT / pcs + price for transport
0.650 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
or drop us a message through
form
our website.
Parameters as well as shape of a magnet can be reviewed with our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical parameters - MW 4x10 / N38 - cylindrical magnet
Specification / characteristics - MW 4x10 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010075 |
| GTIN/EAN | 5906301810742 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 4 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 0.94 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.32 kg / 3.16 N |
| Magnetic Induction ~ ? | 606.05 mT / 6061 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the assembly - report
Presented information are the result of a physical calculation. Values were calculated on models for the material Nd2Fe14B. Actual conditions may deviate from the simulation results. Use these calculations as a reference point during assembly planning.
Table 1: Static force (pull vs distance) - characteristics
MW 4x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
6049 Gs
604.9 mT
|
0.32 kg / 0.71 LBS
320.0 g / 3.1 N
|
safe |
| 1 mm |
3327 Gs
332.7 mT
|
0.10 kg / 0.21 LBS
96.8 g / 0.9 N
|
safe |
| 2 mm |
1732 Gs
173.2 mT
|
0.03 kg / 0.06 LBS
26.2 g / 0.3 N
|
safe |
| 3 mm |
969 Gs
96.9 mT
|
0.01 kg / 0.02 LBS
8.2 g / 0.1 N
|
safe |
| 5 mm |
389 Gs
38.9 mT
|
0.00 kg / 0.00 LBS
1.3 g / 0.0 N
|
safe |
| 10 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.00 LBS
0.1 g / 0.0 N
|
safe |
| 15 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 20 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 30 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
Table 2: Shear hold (wall)
MW 4x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.06 kg / 0.14 LBS
64.0 g / 0.6 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 0.04 LBS
20.0 g / 0.2 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.01 LBS
6.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
2.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MW 4x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 0.21 LBS
96.0 g / 0.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.06 kg / 0.14 LBS
64.0 g / 0.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 LBS
32.0 g / 0.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.16 kg / 0.35 LBS
160.0 g / 1.6 N
|
Table 4: Material efficiency (saturation) - power losses
MW 4x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 LBS
32.0 g / 0.3 N
|
| 1 mm |
|
0.08 kg / 0.18 LBS
80.0 g / 0.8 N
|
| 2 mm |
|
0.16 kg / 0.35 LBS
160.0 g / 1.6 N
|
| 3 mm |
|
0.24 kg / 0.53 LBS
240.0 g / 2.4 N
|
| 5 mm |
|
0.32 kg / 0.71 LBS
320.0 g / 3.1 N
|
| 10 mm |
|
0.32 kg / 0.71 LBS
320.0 g / 3.1 N
|
| 11 mm |
|
0.32 kg / 0.71 LBS
320.0 g / 3.1 N
|
| 12 mm |
|
0.32 kg / 0.71 LBS
320.0 g / 3.1 N
|
Table 5: Working in heat (stability) - resistance threshold
MW 4x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.32 kg / 0.71 LBS
320.0 g / 3.1 N
|
OK |
| 40 °C | -2.2% |
0.31 kg / 0.69 LBS
313.0 g / 3.1 N
|
OK |
| 60 °C | -4.4% |
0.31 kg / 0.67 LBS
305.9 g / 3.0 N
|
OK |
| 80 °C | -6.6% |
0.30 kg / 0.66 LBS
298.9 g / 2.9 N
|
|
| 100 °C | -28.8% |
0.23 kg / 0.50 LBS
227.8 g / 2.2 N
|
Table 6: Two magnets (attraction) - field range
MW 4x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.83 kg / 6.25 LBS
6 138 Gs
|
0.43 kg / 0.94 LBS
425 g / 4.2 N
|
N/A |
| 1 mm |
1.63 kg / 3.59 LBS
9 174 Gs
|
0.24 kg / 0.54 LBS
244 g / 2.4 N
|
1.47 kg / 3.23 LBS
~0 Gs
|
| 2 mm |
0.86 kg / 1.89 LBS
6 655 Gs
|
0.13 kg / 0.28 LBS
129 g / 1.3 N
|
0.77 kg / 1.70 LBS
~0 Gs
|
| 3 mm |
0.44 kg / 0.97 LBS
4 777 Gs
|
0.07 kg / 0.15 LBS
66 g / 0.7 N
|
0.40 kg / 0.88 LBS
~0 Gs
|
| 5 mm |
0.13 kg / 0.28 LBS
2 561 Gs
|
0.02 kg / 0.04 LBS
19 g / 0.2 N
|
0.11 kg / 0.25 LBS
~0 Gs
|
| 10 mm |
0.01 kg / 0.03 LBS
778 Gs
|
0.00 kg / 0.00 LBS
2 g / 0.0 N
|
0.01 kg / 0.02 LBS
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 LBS
179 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 LBS
19 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 LBS
12 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 LBS
8 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 LBS
6 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
4 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
3 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MW 4x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - warning
MW 4x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
18.61 km/h
(5.17 m/s)
|
0.01 J | |
| 30 mm |
32.23 km/h
(8.95 m/s)
|
0.04 J | |
| 50 mm |
41.61 km/h
(11.56 m/s)
|
0.06 J | |
| 100 mm |
58.84 km/h
(16.35 m/s)
|
0.13 J |
Table 9: Corrosion resistance
MW 4x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 4x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 864 Mx | 8.6 µWb |
| Pc Coefficient | 1.31 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MW 4x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.32 kg | Standard |
| Water (riverbed) |
0.37 kg
(+0.05 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical wall, the magnet retains just approx. 20-30% of its nominal pull.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) drastically weakens the holding force.
3. Thermal stability
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.31
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View more offers
Strengths as well as weaknesses of rare earth magnets.
Benefits
- They retain attractive force for nearly ten years – the loss is just ~1% (in theory),
- They do not lose their magnetic properties even under external field action,
- Thanks to the glossy finish, the surface of nickel, gold, or silver gives an elegant appearance,
- The surface of neodymium magnets generates a unique magnetic field – this is a distinguishing feature,
- Neodymium magnets are characterized by very high magnetic induction on the magnet surface and can work (depending on the form) even at a temperature of 230°C or more...
- Thanks to freedom in forming and the capacity to adapt to specific needs,
- Significant place in advanced technology sectors – they are utilized in computer drives, brushless drives, precision medical tools, also industrial machines.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Disadvantages
- At strong impacts they can break, therefore we recommend placing them in steel cases. A metal housing provides additional protection against damage and increases the magnet's durability.
- We warn that neodymium magnets can reduce their strength at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
- Magnets exposed to a humid environment can corrode. Therefore when using outdoors, we recommend using waterproof magnets made of rubber, plastic or other material resistant to moisture
- We recommend casing - magnetic mechanism, due to difficulties in producing threads inside the magnet and complex shapes.
- Health risk to health – tiny shards of magnets can be dangerous, when accidentally swallowed, which is particularly important in the context of child safety. Additionally, small components of these magnets are able to be problematic in diagnostics medical in case of swallowing.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which hinders application in large quantities
Holding force characteristics
Detachment force of the magnet in optimal conditions – what affects it?
- using a sheet made of mild steel, acting as a magnetic yoke
- whose transverse dimension reaches at least 10 mm
- with an polished contact surface
- under conditions of no distance (metal-to-metal)
- for force acting at a right angle (pull-off, not shear)
- at conditions approx. 20°C
Practical lifting capacity: influencing factors
- Air gap (betwixt the magnet and the plate), because even a microscopic clearance (e.g. 0.5 mm) leads to a decrease in force by up to 50% (this also applies to paint, corrosion or debris).
- Loading method – declared lifting capacity refers to detachment vertically. When attempting to slide, the magnet exhibits much less (often approx. 20-30% of nominal force).
- Plate thickness – insufficiently thick plate does not accept the full field, causing part of the flux to be escaped into the air.
- Plate material – mild steel gives the best results. Alloy steels reduce magnetic properties and holding force.
- Surface quality – the more even the plate, the better the adhesion and stronger the hold. Unevenness creates an air distance.
- Thermal environment – heating the magnet results in weakening of force. Check the maximum operating temperature for a given model.
Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 75%. Moreover, even a minimal clearance between the magnet’s surface and the plate lowers the load capacity.
Warnings
Allergic reactions
Medical facts indicate that the nickel plating (standard magnet coating) is a common allergen. If your skin reacts to metals, prevent direct skin contact and choose encased magnets.
Medical interference
Warning for patients: Strong magnetic fields affect electronics. Keep at least 30 cm distance or ask another person to handle the magnets.
Swallowing risk
Neodymium magnets are not suitable for play. Accidental ingestion of a few magnets can lead to them connecting inside the digestive tract, which constitutes a direct threat to life and requires urgent medical intervention.
Immense force
Be careful. Rare earth magnets act from a long distance and snap with massive power, often faster than you can move away.
Magnet fragility
Protect your eyes. Magnets can fracture upon violent connection, launching sharp fragments into the air. We recommend safety glasses.
Flammability
Fire hazard: Neodymium dust is highly flammable. Avoid machining magnets without safety gear as this may cause fire.
Crushing force
Big blocks can smash fingers instantly. Do not place your hand between two strong magnets.
Precision electronics
GPS units and mobile phones are highly susceptible to magnetism. Close proximity with a strong magnet can ruin the sensors in your phone.
Safe distance
Avoid bringing magnets near a wallet, laptop, or TV. The magnetic field can irreversibly ruin these devices and wipe information from cards.
Heat warning
Control the heat. Heating the magnet above 80 degrees Celsius will destroy its properties and pulling force.
