tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our proposal. All "neodymium magnets" on our website are in stock for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to purchase strong magnet? Magnetic holders in airtight and durable steel casing are excellent for use in challenging weather conditions, including in the rain and snow see...

magnetic holders

Holders with magnets can be used to improve production processes, exploring underwater areas, or searching for meteors made of ore check...

Order always shipped if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 45x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010073

GTIN: 5906301810728

0

Diameter Ø [±0,1 mm]

45 mm

Height [±0,1 mm]

30 mm

Weight

357.85 g

Magnetization Direction

↑ axial

Load capacity

74.65 kg / 732.07 N

Magnetic Induction

495.87 mT

Coating

[NiCuNi] nickel

136.80 with VAT / pcs + price for transport

111.22 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
111.22 ZŁ
136.80 ZŁ
price from 10 pcs
104.55 ZŁ
128.59 ZŁ
price from 25 pcs
97.87 ZŁ
120.38 ZŁ

Want to talk magnets?

Call us +48 888 99 98 98 if you prefer drop us a message using inquiry form our website.
Parameters as well as form of neodymium magnets can be tested using our power calculator.

Order by 14:00 and we’ll ship today!

MW 45x30 / N38 - cylindrical magnet

Specification/characteristics MW 45x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010073
GTIN
5906301810728
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
45 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
357.85 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
74.65 kg / 732.07 N
Magnetic Induction ~ ?
495.87 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 45x30 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed traditional iron magnets. Because of their power, they are often employed in devices that require strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 45x30 / N38 and a magnetic lifting capacity of 74.65 kg weighs only 357.85 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information as well as promotions, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are useful in various applications, they can also constitute certain dangers. Because of their strong magnetic power, they can attract metallic objects with great force, which can lead to crushing skin as well as other surfaces, especially hands. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strongest available magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with other metals and then shaping and heat treating. Their unmatched magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as gold, to preserve them from external factors and prolong their durability. Temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
A neodymium magnet N50 and N52 is a strong and extremely powerful magnetic product in the form of a cylinder, featuring strong holding power and universal applicability. Attractive price, fast shipping, durability and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
  • Their ability to resist magnetic interference from external fields is among the best,
  • In other words, due to the glossy gold coating, the magnet obtains an stylish appearance,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for fine forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Important function in advanced technical fields – they are utilized in HDDs, rotating machines, healthcare devices or even other advanced devices,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall robustness,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of coated materials,
  • Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
  • Health risk related to magnet particles may arise, in case of ingestion, which is notable in the health of young users. Moreover, minuscule fragments from these magnets might interfere with diagnostics once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum holding power of the magnet – what affects it?

The given strength of the magnet means the optimal strength, calculated under optimal conditions, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

What influences lifting capacity in practice

The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate decreases the holding force.

Caution with Neodymium Magnets

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, are able even cut off a finger or there can be a severe pressure or even a fracture.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Avoid bringing neodymium magnets close to a phone or GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 It is important to keep neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets made of neodymium are especially delicate, resulting in shattering.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Be careful!

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98