MPL 3x3x1 / N38 - lamellar magnet
lamellar magnet
Catalog no 020146
GTIN/EAN: 5906301811527
length
3 mm [±0,1 mm]
Width
3 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.07 g
Magnetization Direction
↑ axial
Load capacity
0.23 kg / 2.29 N
Magnetic Induction
317.31 mT / 3173 Gs
Coating
[NiCuNi] Nickel
0.1845 ZŁ with VAT / pcs + price for transport
0.1500 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
if you prefer contact us through
inquiry form
the contact section.
Specifications and appearance of neodymium magnets can be tested using our
online calculation tool.
Same-day shipping for orders placed before 14:00.
Technical details - MPL 3x3x1 / N38 - lamellar magnet
Specification / characteristics - MPL 3x3x1 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020146 |
| GTIN/EAN | 5906301811527 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 3 mm [±0,1 mm] |
| Width | 3 mm [±0,1 mm] |
| Height | 1 mm [±0,1 mm] |
| Weight | 0.07 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.23 kg / 2.29 N |
| Magnetic Induction ~ ? | 317.31 mT / 3173 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the assembly - data
These data are the result of a engineering calculation. Results were calculated on models for the class Nd2Fe14B. Operational conditions might slightly deviate from the simulation results. Use these calculations as a reference point for designers.
Table 1: Static pull force (force vs distance) - characteristics
MPL 3x3x1 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3168 Gs
316.8 mT
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
weak grip |
| 1 mm |
1565 Gs
156.5 mT
|
0.06 kg / 0.12 lbs
56.1 g / 0.6 N
|
weak grip |
| 2 mm |
659 Gs
65.9 mT
|
0.01 kg / 0.02 lbs
9.9 g / 0.1 N
|
weak grip |
| 3 mm |
307 Gs
30.7 mT
|
0.00 kg / 0.00 lbs
2.2 g / 0.0 N
|
weak grip |
| 5 mm |
94 Gs
9.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
weak grip |
| 10 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 15 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 20 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Shear load (wall)
MPL 3x3x1 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MPL 3x3x1 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.07 kg / 0.15 lbs
69.0 g / 0.7 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.02 kg / 0.05 lbs
23.0 g / 0.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.12 kg / 0.25 lbs
115.0 g / 1.1 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MPL 3x3x1 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.02 kg / 0.05 lbs
23.0 g / 0.2 N
|
| 1 mm |
|
0.06 kg / 0.13 lbs
57.5 g / 0.6 N
|
| 2 mm |
|
0.12 kg / 0.25 lbs
115.0 g / 1.1 N
|
| 3 mm |
|
0.17 kg / 0.38 lbs
172.5 g / 1.7 N
|
| 5 mm |
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 10 mm |
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 11 mm |
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 12 mm |
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
Table 5: Working in heat (material behavior) - resistance threshold
MPL 3x3x1 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
OK |
| 40 °C | -2.2% |
0.22 kg / 0.50 lbs
224.9 g / 2.2 N
|
OK |
| 60 °C | -4.4% |
0.22 kg / 0.48 lbs
219.9 g / 2.2 N
|
|
| 80 °C | -6.6% |
0.21 kg / 0.47 lbs
214.8 g / 2.1 N
|
|
| 100 °C | -28.8% |
0.16 kg / 0.36 lbs
163.8 g / 1.6 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MPL 3x3x1 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.56 kg / 1.23 lbs
4 719 Gs
|
0.08 kg / 0.18 lbs
84 g / 0.8 N
|
N/A |
| 1 mm |
0.31 kg / 0.68 lbs
4 706 Gs
|
0.05 kg / 0.10 lbs
46 g / 0.5 N
|
0.28 kg / 0.61 lbs
~0 Gs
|
| 2 mm |
0.14 kg / 0.30 lbs
3 129 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 3 mm |
0.06 kg / 0.12 lbs
2 019 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 5 mm |
0.01 kg / 0.02 lbs
885 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 lbs
188 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MPL 3x3x1 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 1.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 1.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 1.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.0 cm |
| Car key | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (cracking risk) - warning
MPL 3x3x1 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
57.81 km/h
(16.06 m/s)
|
0.01 J | |
| 30 mm |
100.13 km/h
(27.81 m/s)
|
0.03 J | |
| 50 mm |
129.27 km/h
(35.91 m/s)
|
0.05 J | |
| 100 mm |
182.81 km/h
(50.78 m/s)
|
0.09 J |
Table 9: Coating parameters (durability)
MPL 3x3x1 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 3x3x1 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 306 Mx | 3.1 µWb |
| Pc Coefficient | 0.40 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 3x3x1 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.23 kg | Standard |
| Water (riverbed) |
0.26 kg
(+0.03 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet retains just a fraction of its nominal pull.
2. Plate thickness effect
*Thin steel (e.g. computer case) severely limits the holding force.
3. Heat tolerance
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.40
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View more proposals
Strengths as well as weaknesses of rare earth magnets.
Advantages
- They retain full power for almost 10 years – the drop is just ~1% (according to analyses),
- Magnets effectively defend themselves against demagnetization caused by external fields,
- Thanks to the elegant finish, the layer of nickel, gold-plated, or silver-plated gives an aesthetic appearance,
- They are known for high magnetic induction at the operating surface, which affects their effectiveness,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- Possibility of detailed modeling as well as adjusting to atypical conditions,
- Fundamental importance in high-tech industry – they serve a role in HDD drives, electric drive systems, precision medical tools, also technologically advanced constructions.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Cons
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth protecting magnets using a steel holder. Such protection not only protects the magnet but also increases its resistance to damage
- We warn that neodymium magnets can reduce their strength at high temperatures. To prevent this, we suggest our specialized [AH] magnets, which work effectively even at 230°C.
- They oxidize in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- We suggest cover - magnetic mount, due to difficulties in creating nuts inside the magnet and complicated forms.
- Potential hazard to health – tiny shards of magnets can be dangerous, if swallowed, which is particularly important in the context of child safety. It is also worth noting that small components of these devices are able to disrupt the diagnostic process medical after entering the body.
- Due to expensive raw materials, their price is higher than average,
Pull force analysis
Maximum holding power of the magnet – what it depends on?
- with the use of a sheet made of special test steel, ensuring maximum field concentration
- with a cross-section of at least 10 mm
- with an ground touching surface
- with total lack of distance (no paint)
- during detachment in a direction perpendicular to the plane
- in temp. approx. 20°C
Magnet lifting force in use – key factors
- Gap between magnet and steel – even a fraction of a millimeter of distance (caused e.g. by varnish or dirt) drastically reduces the pulling force, often by half at just 0.5 mm.
- Angle of force application – highest force is available only during pulling at a 90° angle. The resistance to sliding of the magnet along the surface is typically many times lower (approx. 1/5 of the lifting capacity).
- Plate thickness – insufficiently thick sheet does not close the flux, causing part of the flux to be escaped into the air.
- Steel grade – ideal substrate is high-permeability steel. Stainless steels may generate lower lifting capacity.
- Surface structure – the smoother and more polished the surface, the larger the contact zone and higher the lifting capacity. Roughness creates an air distance.
- Temperature – temperature increase results in weakening of force. Check the thermal limit for a given model.
Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under shearing force the lifting capacity is smaller. In addition, even a small distance between the magnet and the plate reduces the load capacity.
H&S for magnets
Heat warning
Do not overheat. NdFeB magnets are susceptible to heat. If you require operation above 80°C, look for HT versions (H, SH, UH).
Choking Hazard
Strictly keep magnets out of reach of children. Ingestion danger is high, and the effects of magnets connecting inside the body are fatal.
Fire warning
Powder generated during grinding of magnets is self-igniting. Do not drill into magnets unless you are an expert.
Finger safety
Risk of injury: The attraction force is so immense that it can result in hematomas, pinching, and broken bones. Use thick gloves.
Eye protection
Despite the nickel coating, the material is delicate and not impact-resistant. Avoid impacts, as the magnet may shatter into sharp, dangerous pieces.
Threat to electronics
Data protection: Strong magnets can ruin payment cards and delicate electronics (heart implants, medical aids, timepieces).
Pacemakers
For implant holders: Strong magnetic fields affect medical devices. Maintain at least 30 cm distance or ask another person to handle the magnets.
Safe operation
Use magnets consciously. Their powerful strength can surprise even professionals. Plan your moves and do not underestimate their force.
Sensitization to coating
Warning for allergy sufferers: The Ni-Cu-Ni coating contains nickel. If skin irritation happens, cease handling magnets and use protective gear.
Keep away from electronics
GPS units and smartphones are extremely sensitive to magnetism. Close proximity with a powerful NdFeB magnet can ruin the sensors in your phone.
