Neodymiums – wide shape selection

Looking for massive power in small size? We offer complete range of disc, cylindrical and ring magnets. Best choice for domestic applications, workshop and industrial tasks. Check our offer in stock.

see magnet catalog

Grips for seabed exploration

Start your adventure related to seabed exploration! Our specialized grips (F200, F400) provide grip certainty and immense power. Solid, corrosion-resistant housing and reinforced ropes are reliable in challenging water conditions.

find your water magnet

Industrial magnetic grips mounting

Professional solutions for mounting without drilling. Threaded grips (M8, M10, M12) provide quick improvement of work on production halls. Perfect for installing lamps, detectors and banners.

check industrial applications

🚀 Express processing: orders by 14:00 shipped within 24h!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MPL 3x3x1 / N38 - lamellar magnet

lamellar magnet

Catalog no 020146

GTIN/EAN: 5906301811527

5.00

length

3 mm [±0,1 mm]

Width

3 mm [±0,1 mm]

Height

1 mm [±0,1 mm]

Weight

0.07 g

Magnetization Direction

↑ axial

Load capacity

0.23 kg / 2.29 N

Magnetic Induction

317.31 mT / 3173 Gs

Coating

[NiCuNi] Nickel

0.1845 with VAT / pcs + price for transport

0.1500 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.1500 ZŁ
0.1845 ZŁ
price from 10000 pcs
0.1350 ZŁ
0.1661 ZŁ
price from 30000 pcs
0.1245 ZŁ
0.1531 ZŁ
Need advice?

Give us a call +48 888 99 98 98 otherwise drop us a message using form the contact page.
Lifting power along with shape of magnetic components can be verified with our modular calculator.

Orders submitted before 14:00 will be dispatched today!

Technical parameters - MPL 3x3x1 / N38 - lamellar magnet

Specification / characteristics - MPL 3x3x1 / N38 - lamellar magnet

properties
properties values
Cat. no. 020146
GTIN/EAN 5906301811527
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 3 mm [±0,1 mm]
Width 3 mm [±0,1 mm]
Height 1 mm [±0,1 mm]
Weight 0.07 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.23 kg / 2.29 N
Magnetic Induction ~ ? 317.31 mT / 3173 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 3x3x1 / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Technical simulation of the product - report

These data are the outcome of a physical analysis. Values rely on models for the class Nd2Fe14B. Actual parameters may differ. Treat these data as a preliminary roadmap during assembly planning.

Table 1: Static pull force (force vs distance) - characteristics
MPL 3x3x1 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3168 Gs
316.8 mT
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
low risk
1 mm 1565 Gs
156.5 mT
0.06 kg / 0.12 lbs
56.1 g / 0.6 N
low risk
2 mm 659 Gs
65.9 mT
0.01 kg / 0.02 lbs
9.9 g / 0.1 N
low risk
3 mm 307 Gs
30.7 mT
0.00 kg / 0.00 lbs
2.2 g / 0.0 N
low risk
5 mm 94 Gs
9.4 mT
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
low risk
10 mm 15 Gs
1.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
low risk
15 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
low risk
20 mm 2 Gs
0.2 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
low risk
30 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
low risk
50 mm 0 Gs
0.0 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
low risk

Table 2: Vertical capacity (vertical surface)
MPL 3x3x1 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.05 kg / 0.10 lbs
46.0 g / 0.5 N
1 mm Stal (~0.2) 0.01 kg / 0.03 lbs
12.0 g / 0.1 N
2 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
3 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
5 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Vertical assembly (shearing) - vertical pull
MPL 3x3x1 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.07 kg / 0.15 lbs
69.0 g / 0.7 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.02 kg / 0.05 lbs
23.0 g / 0.2 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.12 kg / 0.25 lbs
115.0 g / 1.1 N

Table 4: Steel thickness (saturation) - power losses
MPL 3x3x1 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.02 kg / 0.05 lbs
23.0 g / 0.2 N
1 mm
25%
0.06 kg / 0.13 lbs
57.5 g / 0.6 N
2 mm
50%
0.12 kg / 0.25 lbs
115.0 g / 1.1 N
3 mm
75%
0.17 kg / 0.38 lbs
172.5 g / 1.7 N
5 mm
100%
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
10 mm
100%
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
11 mm
100%
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
12 mm
100%
0.23 kg / 0.51 lbs
230.0 g / 2.3 N

Table 5: Thermal stability (stability) - resistance threshold
MPL 3x3x1 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.23 kg / 0.51 lbs
230.0 g / 2.3 N
OK
40 °C -2.2% 0.22 kg / 0.50 lbs
224.9 g / 2.2 N
OK
60 °C -4.4% 0.22 kg / 0.48 lbs
219.9 g / 2.2 N
80 °C -6.6% 0.21 kg / 0.47 lbs
214.8 g / 2.1 N
100 °C -28.8% 0.16 kg / 0.36 lbs
163.8 g / 1.6 N

Table 6: Magnet-Magnet interaction (attraction) - field collision
MPL 3x3x1 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 0.56 kg / 1.23 lbs
4 719 Gs
0.08 kg / 0.18 lbs
84 g / 0.8 N
N/A
1 mm 0.31 kg / 0.68 lbs
4 706 Gs
0.05 kg / 0.10 lbs
46 g / 0.5 N
0.28 kg / 0.61 lbs
~0 Gs
2 mm 0.14 kg / 0.30 lbs
3 129 Gs
0.02 kg / 0.04 lbs
20 g / 0.2 N
0.12 kg / 0.27 lbs
~0 Gs
3 mm 0.06 kg / 0.12 lbs
2 019 Gs
0.01 kg / 0.02 lbs
8 g / 0.1 N
0.05 kg / 0.11 lbs
~0 Gs
5 mm 0.01 kg / 0.02 lbs
885 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.02 lbs
~0 Gs
10 mm 0.00 kg / 0.00 lbs
188 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
30 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
1 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
1 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
1 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
0 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
0 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Hazards (implants) - warnings
MPL 3x3x1 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 1.5 cm
Hearing aid 10 Gs (1.0 mT) 1.5 cm
Timepiece 20 Gs (2.0 mT) 1.0 cm
Mobile device 40 Gs (4.0 mT) 1.0 cm
Remote 50 Gs (5.0 mT) 1.0 cm
Payment card 400 Gs (40.0 mT) 0.5 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Impact energy (kinetic energy) - collision effects
MPL 3x3x1 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 57.81 km/h
(16.06 m/s)
0.01 J
30 mm 100.13 km/h
(27.81 m/s)
0.03 J
50 mm 129.27 km/h
(35.91 m/s)
0.05 J
100 mm 182.81 km/h
(50.78 m/s)
0.09 J

Table 9: Corrosion resistance
MPL 3x3x1 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MPL 3x3x1 / N38

Parameter Value SI Unit / Description
Magnetic Flux 306 Mx 3.1 µWb
Pc Coefficient 0.40 Low (Flat)

Table 11: Physics of underwater searching
MPL 3x3x1 / N38

Environment Effective steel pull Effect
Air (land) 0.23 kg Standard
Water (riverbed) 0.26 kg
(+0.03 kg buoyancy gain)
+14.5%
Corrosion warning: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Sliding resistance

*Caution: On a vertical surface, the magnet holds just ~20% of its perpendicular strength.

2. Steel thickness impact

*Thin steel (e.g. 0.5mm PC case) significantly reduces the holding force.

3. Power loss vs temp

*For N38 grade, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.40

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Environmental data
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020146-2026
Measurement Calculator
Force (pull)

Field Strength

Other deals

This product is a very powerful plate magnet made of NdFeB material, which, with dimensions of 3x3x1 mm and a weight of 0.07 g, guarantees the highest quality connection. As a magnetic bar with high power (approx. 0.23 kg), this product is available off-the-shelf from our warehouse in Poland. The durable anti-corrosion layer ensures a long lifespan in a dry environment, protecting the core from oxidation.
The key to success is sliding the magnets along their largest connection plane (using e.g., the edge of a table), which is easier than trying to tear them apart directly. To separate the MPL 3x3x1 / N38 model, firmly slide one magnet over the edge of the other until the attraction force decreases. We recommend care, because after separation, the magnets may want to violently snap back together, which threatens pinching the skin. Never use metal tools for prying, as the brittle NdFeB material may chip and damage your eyes.
Plate magnets MPL 3x3x1 / N38 are the foundation for many industrial devices, such as filters catching filings and linear motors. Thanks to the flat surface and high force (approx. 0.23 kg), they are ideal as hidden locks in furniture making and mounting elements in automation. Their rectangular shape facilitates precise gluing into milled sockets in wood or plastic.
Cyanoacrylate glues (super glue type) are good only for small magnets; for larger plates, we recommend resins. For lighter applications or mounting on smooth surfaces, branded foam tape (e.g., 3M VHB) will work, provided the surface is perfectly degreased. Avoid chemically aggressive glues or hot glue, which can demagnetize neodymium (above 80°C).
Standardly, the MPL 3x3x1 / N38 model is magnetized axially (dimension 1 mm), which means that the N and S poles are located on its largest, flat surfaces. In practice, this means that this magnet has the greatest attraction force on its main planes (3x3 mm), which is ideal for flat mounting. This is the most popular configuration for block magnets used in separators and holders.
The presented product is a neodymium magnet with precisely defined parameters: 3 mm (length), 3 mm (width), and 1 mm (thickness). The key parameter here is the holding force amounting to approximately 0.23 kg (force ~2.29 N), which, with such a compact shape, proves the high power of the material. The product meets the standards for N38 grade magnets.

Advantages as well as disadvantages of rare earth magnets.

Advantages

In addition to their long-term stability, neodymium magnets provide the following advantages:
  • Their magnetic field remains stable, and after around ten years it decreases only by ~1% (theoretically),
  • Neodymium magnets are distinguished by remarkably resistant to magnetic field loss caused by magnetic disturbances,
  • By covering with a shiny coating of gold, the element acquires an proper look,
  • Magnets are characterized by excellent magnetic induction on the working surface,
  • Through (appropriate) combination of ingredients, they can achieve high thermal resistance, enabling functioning at temperatures reaching 230°C and above...
  • Thanks to flexibility in forming and the ability to modify to specific needs,
  • Wide application in high-tech industry – they are utilized in mass storage devices, motor assemblies, precision medical tools, also multitasking production systems.
  • Relatively small size with high pulling force – neodymium magnets offer high power in compact dimensions, which enables their usage in small systems

Limitations

Disadvantages of neodymium magnets:
  • At very strong impacts they can crack, therefore we advise placing them in special holders. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
  • We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
  • Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material stable to moisture, when using outdoors
  • We recommend cover - magnetic mechanism, due to difficulties in producing threads inside the magnet and complicated shapes.
  • Possible danger related to microscopic parts of magnets can be dangerous, when accidentally swallowed, which becomes key in the context of child health protection. Additionally, tiny parts of these magnets can disrupt the diagnostic process medical when they are in the body.
  • Due to expensive raw materials, their price is relatively high,

Pull force analysis

Optimal lifting capacity of a neodymium magnetwhat contributes to it?

The specified lifting capacity represents the peak performance, measured under laboratory conditions, meaning:
  • using a plate made of mild steel, acting as a ideal flux conductor
  • possessing a thickness of min. 10 mm to ensure full flux closure
  • with a plane perfectly flat
  • with zero gap (without paint)
  • during pulling in a direction perpendicular to the plane
  • at conditions approx. 20°C

Impact of factors on magnetic holding capacity in practice

Bear in mind that the working load will differ subject to elements below, in order of importance:
  • Gap (betwixt the magnet and the plate), since even a very small clearance (e.g. 0.5 mm) leads to a reduction in lifting capacity by up to 50% (this also applies to paint, rust or debris).
  • Load vector – maximum parameter is reached only during pulling at a 90° angle. The resistance to sliding of the magnet along the surface is usually many times lower (approx. 1/5 of the lifting capacity).
  • Metal thickness – thin material does not allow full use of the magnet. Magnetic flux passes through the material instead of generating force.
  • Metal type – different alloys reacts the same. Alloy additives weaken the interaction with the magnet.
  • Plate texture – ground elements guarantee perfect abutment, which increases force. Uneven metal reduce efficiency.
  • Heat – neodymium magnets have a negative temperature coefficient. At higher temperatures they lose power, and at low temperatures gain strength (up to a certain limit).

Lifting capacity was assessed by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a slight gap between the magnet’s surface and the plate reduces the lifting capacity.

Safe handling of neodymium magnets
Magnetic interference

Navigation devices and smartphones are extremely sensitive to magnetic fields. Close proximity with a strong magnet can ruin the sensors in your phone.

Beware of splinters

Protect your eyes. Magnets can explode upon uncontrolled impact, launching sharp fragments into the air. Eye protection is mandatory.

Fire risk

Powder created during grinding of magnets is combustible. Avoid drilling into magnets unless you are an expert.

Pinching danger

Danger of trauma: The pulling power is so great that it can result in hematomas, crushing, and broken bones. Use thick gloves.

Pacemakers

Patients with a ICD have to keep an safe separation from magnets. The magnetism can stop the operation of the life-saving device.

Threat to electronics

Do not bring magnets near a wallet, computer, or TV. The magnetic field can destroy these devices and wipe information from cards.

Do not overheat magnets

Do not overheat. Neodymium magnets are susceptible to heat. If you require operation above 80°C, ask us about HT versions (H, SH, UH).

Handling guide

Before use, read the rules. Sudden snapping can break the magnet or injure your hand. Think ahead.

This is not a toy

Only for adults. Small elements pose a choking risk, causing intestinal necrosis. Store away from children and animals.

Nickel coating and allergies

It is widely known that the nickel plating (the usual finish) is a common allergen. If you have an allergy, prevent touching magnets with bare hands or select encased magnets.

Danger! Looking for details? Read our article: Why are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98