MPL 3x3x1 / N38 - lamellar magnet
lamellar magnet
Catalog no 020146
GTIN/EAN: 5906301811527
length
3 mm [±0,1 mm]
Width
3 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.07 g
Magnetization Direction
↑ axial
Load capacity
0.23 kg / 2.29 N
Magnetic Induction
317.31 mT / 3173 Gs
Coating
[NiCuNi] Nickel
0.1845 ZŁ with VAT / pcs + price for transport
0.1500 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
otherwise drop us a message using
form
the contact page.
Lifting power along with shape of magnetic components can be verified with our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
Technical parameters - MPL 3x3x1 / N38 - lamellar magnet
Specification / characteristics - MPL 3x3x1 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020146 |
| GTIN/EAN | 5906301811527 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 3 mm [±0,1 mm] |
| Width | 3 mm [±0,1 mm] |
| Height | 1 mm [±0,1 mm] |
| Weight | 0.07 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.23 kg / 2.29 N |
| Magnetic Induction ~ ? | 317.31 mT / 3173 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the product - report
These data are the outcome of a physical analysis. Values rely on models for the class Nd2Fe14B. Actual parameters may differ. Treat these data as a preliminary roadmap during assembly planning.
Table 1: Static pull force (force vs distance) - characteristics
MPL 3x3x1 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3168 Gs
316.8 mT
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
low risk |
| 1 mm |
1565 Gs
156.5 mT
|
0.06 kg / 0.12 lbs
56.1 g / 0.6 N
|
low risk |
| 2 mm |
659 Gs
65.9 mT
|
0.01 kg / 0.02 lbs
9.9 g / 0.1 N
|
low risk |
| 3 mm |
307 Gs
30.7 mT
|
0.00 kg / 0.00 lbs
2.2 g / 0.0 N
|
low risk |
| 5 mm |
94 Gs
9.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
low risk |
| 10 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 15 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 20 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Vertical capacity (vertical surface)
MPL 3x3x1 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MPL 3x3x1 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.07 kg / 0.15 lbs
69.0 g / 0.7 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.02 kg / 0.05 lbs
23.0 g / 0.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.12 kg / 0.25 lbs
115.0 g / 1.1 N
|
Table 4: Steel thickness (saturation) - power losses
MPL 3x3x1 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.02 kg / 0.05 lbs
23.0 g / 0.2 N
|
| 1 mm |
|
0.06 kg / 0.13 lbs
57.5 g / 0.6 N
|
| 2 mm |
|
0.12 kg / 0.25 lbs
115.0 g / 1.1 N
|
| 3 mm |
|
0.17 kg / 0.38 lbs
172.5 g / 1.7 N
|
| 5 mm |
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 10 mm |
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 11 mm |
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 12 mm |
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
Table 5: Thermal stability (stability) - resistance threshold
MPL 3x3x1 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
OK |
| 40 °C | -2.2% |
0.22 kg / 0.50 lbs
224.9 g / 2.2 N
|
OK |
| 60 °C | -4.4% |
0.22 kg / 0.48 lbs
219.9 g / 2.2 N
|
|
| 80 °C | -6.6% |
0.21 kg / 0.47 lbs
214.8 g / 2.1 N
|
|
| 100 °C | -28.8% |
0.16 kg / 0.36 lbs
163.8 g / 1.6 N
|
Table 6: Magnet-Magnet interaction (attraction) - field collision
MPL 3x3x1 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.56 kg / 1.23 lbs
4 719 Gs
|
0.08 kg / 0.18 lbs
84 g / 0.8 N
|
N/A |
| 1 mm |
0.31 kg / 0.68 lbs
4 706 Gs
|
0.05 kg / 0.10 lbs
46 g / 0.5 N
|
0.28 kg / 0.61 lbs
~0 Gs
|
| 2 mm |
0.14 kg / 0.30 lbs
3 129 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 3 mm |
0.06 kg / 0.12 lbs
2 019 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 5 mm |
0.01 kg / 0.02 lbs
885 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 lbs
188 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - warnings
MPL 3x3x1 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 1.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 1.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 1.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.0 cm |
| Remote | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 3x3x1 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
57.81 km/h
(16.06 m/s)
|
0.01 J | |
| 30 mm |
100.13 km/h
(27.81 m/s)
|
0.03 J | |
| 50 mm |
129.27 km/h
(35.91 m/s)
|
0.05 J | |
| 100 mm |
182.81 km/h
(50.78 m/s)
|
0.09 J |
Table 9: Corrosion resistance
MPL 3x3x1 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 3x3x1 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 306 Mx | 3.1 µWb |
| Pc Coefficient | 0.40 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 3x3x1 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.23 kg | Standard |
| Water (riverbed) |
0.26 kg
(+0.03 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical surface, the magnet holds just ~20% of its perpendicular strength.
2. Steel thickness impact
*Thin steel (e.g. 0.5mm PC case) significantly reduces the holding force.
3. Power loss vs temp
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.40
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Advantages as well as disadvantages of rare earth magnets.
Advantages
- Their magnetic field remains stable, and after around ten years it decreases only by ~1% (theoretically),
- Neodymium magnets are distinguished by remarkably resistant to magnetic field loss caused by magnetic disturbances,
- By covering with a shiny coating of gold, the element acquires an proper look,
- Magnets are characterized by excellent magnetic induction on the working surface,
- Through (appropriate) combination of ingredients, they can achieve high thermal resistance, enabling functioning at temperatures reaching 230°C and above...
- Thanks to flexibility in forming and the ability to modify to specific needs,
- Wide application in high-tech industry – they are utilized in mass storage devices, motor assemblies, precision medical tools, also multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer high power in compact dimensions, which enables their usage in small systems
Limitations
- At very strong impacts they can crack, therefore we advise placing them in special holders. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material stable to moisture, when using outdoors
- We recommend cover - magnetic mechanism, due to difficulties in producing threads inside the magnet and complicated shapes.
- Possible danger related to microscopic parts of magnets can be dangerous, when accidentally swallowed, which becomes key in the context of child health protection. Additionally, tiny parts of these magnets can disrupt the diagnostic process medical when they are in the body.
- Due to expensive raw materials, their price is relatively high,
Pull force analysis
Optimal lifting capacity of a neodymium magnet – what contributes to it?
- using a plate made of mild steel, acting as a ideal flux conductor
- possessing a thickness of min. 10 mm to ensure full flux closure
- with a plane perfectly flat
- with zero gap (without paint)
- during pulling in a direction perpendicular to the plane
- at conditions approx. 20°C
Impact of factors on magnetic holding capacity in practice
- Gap (betwixt the magnet and the plate), since even a very small clearance (e.g. 0.5 mm) leads to a reduction in lifting capacity by up to 50% (this also applies to paint, rust or debris).
- Load vector – maximum parameter is reached only during pulling at a 90° angle. The resistance to sliding of the magnet along the surface is usually many times lower (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Magnetic flux passes through the material instead of generating force.
- Metal type – different alloys reacts the same. Alloy additives weaken the interaction with the magnet.
- Plate texture – ground elements guarantee perfect abutment, which increases force. Uneven metal reduce efficiency.
- Heat – neodymium magnets have a negative temperature coefficient. At higher temperatures they lose power, and at low temperatures gain strength (up to a certain limit).
Lifting capacity was assessed by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a slight gap between the magnet’s surface and the plate reduces the lifting capacity.
Safe handling of neodymium magnets
Magnetic interference
Navigation devices and smartphones are extremely sensitive to magnetic fields. Close proximity with a strong magnet can ruin the sensors in your phone.
Beware of splinters
Protect your eyes. Magnets can explode upon uncontrolled impact, launching sharp fragments into the air. Eye protection is mandatory.
Fire risk
Powder created during grinding of magnets is combustible. Avoid drilling into magnets unless you are an expert.
Pinching danger
Danger of trauma: The pulling power is so great that it can result in hematomas, crushing, and broken bones. Use thick gloves.
Pacemakers
Patients with a ICD have to keep an safe separation from magnets. The magnetism can stop the operation of the life-saving device.
Threat to electronics
Do not bring magnets near a wallet, computer, or TV. The magnetic field can destroy these devices and wipe information from cards.
Do not overheat magnets
Do not overheat. Neodymium magnets are susceptible to heat. If you require operation above 80°C, ask us about HT versions (H, SH, UH).
Handling guide
Before use, read the rules. Sudden snapping can break the magnet or injure your hand. Think ahead.
This is not a toy
Only for adults. Small elements pose a choking risk, causing intestinal necrosis. Store away from children and animals.
Nickel coating and allergies
It is widely known that the nickel plating (the usual finish) is a common allergen. If you have an allergy, prevent touching magnets with bare hands or select encased magnets.
