e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. Practically all magnesy on our website are in stock for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in airtight and durable enclosure are ideally suited for use in variable and difficult climate conditions, including in the rain and snow more information...

magnets with holders

Holders with magnets can be applied to facilitate manufacturing, underwater discoveries, or finding space rocks from gold see more...

Order always shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 12x50 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010020

GTIN: 5906301810193

5

Diameter Ø [±0,1 mm]

12 mm

Height [±0,1 mm]

50 mm

Weight

42.41 g

Magnetization Direction

↑ axial

Load capacity

33.18 kg / 325.38 N

Magnetic Induction

614.94 mT

Coating

[NiCuNi] nickel

23.95 with VAT / pcs + price for transport

19.47 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
19.47 ZŁ
23.95 ZŁ
price from 40 pcs
18.30 ZŁ
22.51 ZŁ
price from 130 pcs
16.94 ZŁ
20.84 ZŁ

Do you have purchase concerns?

Call us +48 22 499 98 98 alternatively send us a note via inquiry form the contact form page.
Force as well as form of magnetic components can be reviewed with our online calculation tool.

Same-day processing for orders placed before 14:00.

MW 12x50 / N38 - cylindrical magnet

Specification/characteristics MW 12x50 / N38 - cylindrical magnet
properties
values
Cat. no.
010020
GTIN
5906301810193
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
12 mm [±0,1 mm]
Height
50 mm [±0,1 mm]
Weight
42.41 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
33.18 kg / 325.38 N
Magnetic Induction ~ ?
614.94 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 12x50 / N38 are magnets created of neodymium in a cylinder form. They are known for their very strong magnetic properties, which outperform ordinary ferrite magnets. Thanks to their strength, they are frequently employed in products that need powerful holding. The typical temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet designated MW 12x50 / N38 with a magnetic lifting capacity of 33.18 kg has a weight of only 42.41 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the latest information and offers, and before visiting, please call.
Although, cylindrical neodymium magnets are very useful in various applications, they can also constitute certain dangers. Because of their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin as well as other materials, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the very strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with other metals and then forming and thermal processing. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as silver, to preserve them from external factors and prolong their durability. High temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A neodymium magnet with classification N50 and N52 is a strong and extremely powerful magnetic product with the shape of a cylinder, providing high force and universal applicability. Competitive price, fast shipping, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their consistent magnetic energy, neodymium magnets have these key benefits:

  • They do not lose their magnetism, even after around ten years – the decrease of power is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a decorative gold surface provides a eye-catching finish,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Wide application in modern technologies – they find application in hard drives, electric motors, healthcare devices as well as technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage while also strengthens its overall resistance,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of plastic for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Safety concern from tiny pieces may arise, in case of ingestion, which is important in the protection of children. Furthermore, minuscule fragments from these devices might hinder health screening once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Maximum magnetic pulling forcewhat affects it?

The given strength of the magnet means the optimal strength, measured in ideal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Practical lifting capacity: influencing factors

The lifting capacity of a magnet is determined by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under parallel forces the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate lowers the load capacity.

Handle Neodymium Magnets Carefully

Neodymium magnets are noted for their fragility, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets bounce and also touch each other mutually within a radius of several to almost 10 cm from each other.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Safety precautions!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98