tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all "magnets" in our store are in stock for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for fishing F400 GOLD

Where to buy powerful neodymium magnet? Magnet holders in solid and airtight steel casing are perfect for use in difficult weather conditions, including in the rain and snow see more...

magnets with holders

Holders with magnets can be used to improve production, exploring underwater areas, or finding meteors made of ore more information...

Enjoy shipping of your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 16x9 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010035

GTIN: 5906301810346

5

Diameter Ø [±0,1 mm]

16 mm

Height [±0,1 mm]

9 mm

Weight

13.57 g

Magnetization Direction

↑ axial

Load capacity

7.96 kg / 78.06 N

Magnetic Induction

463.05 mT

Coating

[NiCuNi] nickel

7.36 with VAT / pcs + price for transport

5.98 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5.98 ZŁ
7.36 ZŁ
price from 150 pcs
5.62 ZŁ
6.91 ZŁ
price from 450 pcs
5.26 ZŁ
6.47 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 888 99 98 98 otherwise get in touch through inquiry form the contact page.
Lifting power as well as structure of a neodymium magnet can be analyzed on our magnetic mass calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 16x9 / N38 - cylindrical magnet

Specification/characteristics MW 16x9 / N38 - cylindrical magnet
properties
values
Cat. no.
010035
GTIN
5906301810346
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
16 mm [±0,1 mm]
Height
9 mm [±0,1 mm]
Weight
13.57 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
7.96 kg / 78.06 N
Magnetic Induction ~ ?
463.05 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 16x9 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed traditional iron magnets. Because of their power, they are frequently used in products that need strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet designated MW 16x9 / N38 with a magnetic force 7.96 kg has a weight of only 13.57 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of silver to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the current information as well as promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in various applications, they can also pose certain risk. Due to their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin or other materials, especially hands. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strongest available magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with additional metals and then shaping and heat treating. Their powerful magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as nickel, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
A cylindrical neodymium magnet of class N50 and N52 is a strong and extremely powerful metallic component shaped like a cylinder, providing strong holding power and universal applicability. Very good price, availability, ruggedness and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their immense strength, neodymium magnets offer the following advantages:

  • They retain their attractive force for around ten years – the drop is just ~1% (based on simulations),
  • They protect against demagnetization induced by surrounding magnetic fields remarkably well,
  • Because of the reflective layer of nickel, the component looks high-end,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping or adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Key role in new technology industries – they are utilized in computer drives, electric drives, diagnostic apparatus or even high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall strength,
  • They lose field intensity at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment. If exposed to rain, we recommend using sealed magnets, such as those made of rubber,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Health risk linked to microscopic shards may arise, especially if swallowed, which is important in the health of young users. It should also be noted that miniature parts from these assemblies might disrupt scanning when ingested,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Detachment force of the magnet in optimal conditionswhat it depends on?

The given holding capacity of the magnet corresponds to the highest holding force, calculated in ideal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, whereas under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate lowers the lifting capacity.

Safety Precautions

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Magnets made of neodymium are fragile as well as can easily crack and get damaged.

Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If joining of neodymium magnets is not controlled, then they may crumble and crack. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Be careful!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98