MW 45x25 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010072
GTIN/EAN: 5906301810711
Diameter Ø
45 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
298.21 g
Magnetization Direction
↑ axial
Load capacity
67.33 kg / 660.51 N
Magnetic Induction
460.72 mT / 4607 Gs
Coating
[NiCuNi] Nickel
101.55 ZŁ with VAT / pcs + price for transport
82.56 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
otherwise let us know by means of
form
the contact form page.
Strength and appearance of a neodymium magnet can be estimated on our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
Technical parameters of the product - MW 45x25 / N38 - cylindrical magnet
Specification / characteristics - MW 45x25 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010072 |
| GTIN/EAN | 5906301810711 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 45 mm [±0,1 mm] |
| Height | 25 mm [±0,1 mm] |
| Weight | 298.21 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 67.33 kg / 660.51 N |
| Magnetic Induction ~ ? | 460.72 mT / 4607 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the magnet - data
The following information represent the outcome of a physical analysis. Results were calculated on models for the material Nd2Fe14B. Actual performance might slightly differ. Please consider these data as a preliminary roadmap for designers.
Table 1: Static force (force vs gap) - characteristics
MW 45x25 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4606 Gs
460.6 mT
|
67.33 kg / 148.44 lbs
67330.0 g / 660.5 N
|
critical level |
| 1 mm |
4413 Gs
441.3 mT
|
61.79 kg / 136.23 lbs
61791.4 g / 606.2 N
|
critical level |
| 2 mm |
4214 Gs
421.4 mT
|
56.35 kg / 124.22 lbs
56345.9 g / 552.8 N
|
critical level |
| 3 mm |
4014 Gs
401.4 mT
|
51.11 kg / 112.68 lbs
51112.0 g / 501.4 N
|
critical level |
| 5 mm |
3615 Gs
361.5 mT
|
41.47 kg / 91.42 lbs
41466.0 g / 406.8 N
|
critical level |
| 10 mm |
2697 Gs
269.7 mT
|
23.08 kg / 50.89 lbs
23083.9 g / 226.5 N
|
critical level |
| 15 mm |
1965 Gs
196.5 mT
|
12.25 kg / 27.00 lbs
12247.0 g / 120.1 N
|
critical level |
| 20 mm |
1426 Gs
142.6 mT
|
6.46 kg / 14.23 lbs
6455.7 g / 63.3 N
|
medium risk |
| 30 mm |
778 Gs
77.8 mT
|
1.92 kg / 4.24 lbs
1922.5 g / 18.9 N
|
safe |
| 50 mm |
285 Gs
28.5 mT
|
0.26 kg / 0.57 lbs
257.0 g / 2.5 N
|
safe |
Table 2: Shear capacity (wall)
MW 45x25 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
13.47 kg / 29.69 lbs
13466.0 g / 132.1 N
|
| 1 mm | Stal (~0.2) |
12.36 kg / 27.24 lbs
12358.0 g / 121.2 N
|
| 2 mm | Stal (~0.2) |
11.27 kg / 24.85 lbs
11270.0 g / 110.6 N
|
| 3 mm | Stal (~0.2) |
10.22 kg / 22.54 lbs
10222.0 g / 100.3 N
|
| 5 mm | Stal (~0.2) |
8.29 kg / 18.29 lbs
8294.0 g / 81.4 N
|
| 10 mm | Stal (~0.2) |
4.62 kg / 10.18 lbs
4616.0 g / 45.3 N
|
| 15 mm | Stal (~0.2) |
2.45 kg / 5.40 lbs
2450.0 g / 24.0 N
|
| 20 mm | Stal (~0.2) |
1.29 kg / 2.85 lbs
1292.0 g / 12.7 N
|
| 30 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 50 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
52.0 g / 0.5 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MW 45x25 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
20.20 kg / 44.53 lbs
20199.0 g / 198.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
13.47 kg / 29.69 lbs
13466.0 g / 132.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
6.73 kg / 14.84 lbs
6733.0 g / 66.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
33.67 kg / 74.22 lbs
33665.0 g / 330.3 N
|
Table 4: Material efficiency (substrate influence) - power losses
MW 45x25 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.24 kg / 4.95 lbs
2244.3 g / 22.0 N
|
| 1 mm |
|
5.61 kg / 12.37 lbs
5610.8 g / 55.0 N
|
| 2 mm |
|
11.22 kg / 24.74 lbs
11221.7 g / 110.1 N
|
| 3 mm |
|
16.83 kg / 37.11 lbs
16832.5 g / 165.1 N
|
| 5 mm |
|
28.05 kg / 61.85 lbs
28054.2 g / 275.2 N
|
| 10 mm |
|
56.11 kg / 123.70 lbs
56108.3 g / 550.4 N
|
| 11 mm |
|
61.72 kg / 136.07 lbs
61719.2 g / 605.5 N
|
| 12 mm |
|
67.33 kg / 148.44 lbs
67330.0 g / 660.5 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MW 45x25 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
67.33 kg / 148.44 lbs
67330.0 g / 660.5 N
|
OK |
| 40 °C | -2.2% |
65.85 kg / 145.17 lbs
65848.7 g / 646.0 N
|
OK |
| 60 °C | -4.4% |
64.37 kg / 141.91 lbs
64367.5 g / 631.4 N
|
OK |
| 80 °C | -6.6% |
62.89 kg / 138.64 lbs
62886.2 g / 616.9 N
|
|
| 100 °C | -28.8% |
47.94 kg / 105.69 lbs
47939.0 g / 470.3 N
|
Table 6: Magnet-Magnet interaction (attraction) - field collision
MW 45x25 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
208.06 kg / 458.70 lbs
5 651 Gs
|
31.21 kg / 68.80 lbs
31209 g / 306.2 N
|
N/A |
| 1 mm |
199.55 kg / 439.92 lbs
9 023 Gs
|
29.93 kg / 65.99 lbs
29932 g / 293.6 N
|
179.59 kg / 395.93 lbs
~0 Gs
|
| 2 mm |
190.95 kg / 420.96 lbs
8 826 Gs
|
28.64 kg / 63.14 lbs
28642 g / 281.0 N
|
171.85 kg / 378.87 lbs
~0 Gs
|
| 3 mm |
182.46 kg / 402.26 lbs
8 628 Gs
|
27.37 kg / 60.34 lbs
27369 g / 268.5 N
|
164.22 kg / 362.03 lbs
~0 Gs
|
| 5 mm |
165.94 kg / 365.83 lbs
8 228 Gs
|
24.89 kg / 54.87 lbs
24891 g / 244.2 N
|
149.35 kg / 329.25 lbs
~0 Gs
|
| 10 mm |
128.14 kg / 282.49 lbs
7 230 Gs
|
19.22 kg / 42.37 lbs
19221 g / 188.6 N
|
115.32 kg / 254.24 lbs
~0 Gs
|
| 20 mm |
71.33 kg / 157.26 lbs
5 394 Gs
|
10.70 kg / 23.59 lbs
10700 g / 105.0 N
|
64.20 kg / 141.54 lbs
~0 Gs
|
| 50 mm |
10.72 kg / 23.63 lbs
2 091 Gs
|
1.61 kg / 3.54 lbs
1608 g / 15.8 N
|
9.65 kg / 21.26 lbs
~0 Gs
|
| 60 mm |
5.94 kg / 13.10 lbs
1 557 Gs
|
0.89 kg / 1.96 lbs
891 g / 8.7 N
|
5.35 kg / 11.79 lbs
~0 Gs
|
| 70 mm |
3.41 kg / 7.52 lbs
1 180 Gs
|
0.51 kg / 1.13 lbs
512 g / 5.0 N
|
3.07 kg / 6.77 lbs
~0 Gs
|
| 80 mm |
2.03 kg / 4.48 lbs
910 Gs
|
0.30 kg / 0.67 lbs
305 g / 3.0 N
|
1.83 kg / 4.03 lbs
~0 Gs
|
| 90 mm |
1.25 kg / 2.76 lbs
714 Gs
|
0.19 kg / 0.41 lbs
188 g / 1.8 N
|
1.13 kg / 2.48 lbs
~0 Gs
|
| 100 mm |
0.79 kg / 1.75 lbs
569 Gs
|
0.12 kg / 0.26 lbs
119 g / 1.2 N
|
0.71 kg / 1.58 lbs
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MW 45x25 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 24.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 19.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 14.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 11.5 cm |
| Remote | 50 Gs (5.0 mT) | 10.5 cm |
| Payment card | 400 Gs (40.0 mT) | 4.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 3.5 cm |
Table 8: Impact energy (cracking risk) - collision effects
MW 45x25 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
18.11 km/h
(5.03 m/s)
|
3.77 J | |
| 30 mm |
26.71 km/h
(7.42 m/s)
|
8.21 J | |
| 50 mm |
33.97 km/h
(9.43 m/s)
|
13.27 J | |
| 100 mm |
47.92 km/h
(13.31 m/s)
|
26.42 J |
Table 9: Anti-corrosion coating durability
MW 45x25 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 45x25 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 73 928 Mx | 739.3 µWb |
| Pc Coefficient | 0.63 | High (Stable) |
Table 11: Physics of underwater searching
MW 45x25 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 67.33 kg | Standard |
| Water (riverbed) |
77.09 kg
(+9.76 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Warning: On a vertical surface, the magnet holds merely ~20% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. 0.5mm PC case) severely reduces the holding force.
3. Temperature resistance
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.63
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Pros and cons of Nd2Fe14B magnets.
Strengths
- They have unchanged lifting capacity, and over around 10 years their performance decreases symbolically – ~1% (in testing),
- Neodymium magnets remain extremely resistant to demagnetization caused by magnetic disturbances,
- A magnet with a shiny gold surface looks better,
- Neodymium magnets ensure maximum magnetic induction on a small surface, which increases force concentration,
- Thanks to resistance to high temperature, they can operate (depending on the shape) even at temperatures up to 230°C and higher...
- Thanks to the option of free forming and adaptation to specialized solutions, NdFeB magnets can be manufactured in a variety of forms and dimensions, which expands the range of possible applications,
- Fundamental importance in high-tech industry – they find application in hard drives, electric drive systems, advanced medical instruments, also industrial machines.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Disadvantages
- Brittleness is one of their disadvantages. Upon intense impact they can fracture. We recommend keeping them in a strong case, which not only protects them against impacts but also raises their durability
- NdFeB magnets lose power when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
- They rust in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- Limited possibility of making nuts in the magnet and complex shapes - recommended is cover - magnet mounting.
- Possible danger related to microscopic parts of magnets are risky, if swallowed, which is particularly important in the context of child health protection. Furthermore, tiny parts of these products can disrupt the diagnostic process medical when they are in the body.
- With large orders the cost of neodymium magnets can be a barrier,
Lifting parameters
Maximum magnetic pulling force – what it depends on?
- with the application of a sheet made of special test steel, guaranteeing maximum field concentration
- whose transverse dimension is min. 10 mm
- with an ground touching surface
- with total lack of distance (without coatings)
- during pulling in a direction perpendicular to the plane
- at conditions approx. 20°C
Key elements affecting lifting force
- Clearance – the presence of any layer (paint, tape, air) acts as an insulator, which lowers capacity rapidly (even by 50% at 0.5 mm).
- Loading method – catalog parameter refers to pulling vertically. When attempting to slide, the magnet exhibits much less (typically approx. 20-30% of maximum force).
- Metal thickness – thin material does not allow full use of the magnet. Magnetic flux penetrates through instead of converting into lifting capacity.
- Steel grade – ideal substrate is high-permeability steel. Hardened steels may have worse magnetic properties.
- Surface structure – the more even the plate, the better the adhesion and stronger the hold. Roughness acts like micro-gaps.
- Temperature – temperature increase causes a temporary drop of induction. Check the maximum operating temperature for a given model.
Lifting capacity was determined with the use of a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance between the magnet and the plate reduces the load capacity.
Safety rules for work with neodymium magnets
Operating temperature
Regular neodymium magnets (grade N) lose magnetization when the temperature exceeds 80°C. The loss of strength is permanent.
Dust explosion hazard
Dust created during grinding of magnets is self-igniting. Avoid drilling into magnets without proper cooling and knowledge.
Magnetic media
Device Safety: Strong magnets can ruin data carriers and delicate electronics (pacemakers, medical aids, timepieces).
Magnetic interference
Navigation devices and smartphones are extremely sensitive to magnetic fields. Close proximity with a powerful NdFeB magnet can decalibrate the sensors in your phone.
Metal Allergy
A percentage of the population experience a sensitization to nickel, which is the common plating for NdFeB magnets. Frequent touching can result in an allergic reaction. We recommend use protective gloves.
No play value
Strictly store magnets out of reach of children. Ingestion danger is high, and the consequences of magnets connecting inside the body are tragic.
Risk of cracking
NdFeB magnets are ceramic materials, which means they are very brittle. Clashing of two magnets leads to them breaking into shards.
Warning for heart patients
Individuals with a heart stimulator have to maintain an absolute distance from magnets. The magnetic field can stop the functioning of the implant.
Caution required
Handle magnets consciously. Their powerful strength can surprise even professionals. Stay alert and do not underestimate their power.
Crushing force
Risk of injury: The attraction force is so great that it can result in hematomas, pinching, and even bone fractures. Protective gloves are recommended.
