e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all magnesy on our website are in stock for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in airtight, solid steel enclosure are ideally suited for use in difficult, demanding weather, including during rain and snow more...

magnets with holders

Holders with magnets can be applied to facilitate production processes, underwater exploration, or locating meteorites from gold see more...

Order always shipped on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 35x5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010059

GTIN: 5906301810582

5

Diameter Ø [±0,1 mm]

35 mm

Height [±0,1 mm]

5 mm

Weight

36.08 g

Magnetization Direction

↑ axial

Load capacity

9.68 kg / 94.93 N

Magnetic Induction

170.30 mT

Coating

[NiCuNi] nickel

13.51 with VAT / pcs + price for transport

10.98 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
10.98 ZŁ
13.51 ZŁ
price from 55 pcs
10.32 ZŁ
12.70 ZŁ
price from 228 pcs
9.66 ZŁ
11.88 ZŁ

Need help making a decision?

Give us a call +48 22 499 98 98 or send us a note using contact form the contact form page.
Parameters along with appearance of a magnet can be verified with our modular calculator.

Orders submitted before 14:00 will be dispatched today!

MW 35x5 / N38 - cylindrical magnet

Specification/characteristics MW 35x5 / N38 - cylindrical magnet
properties
values
Cat. no.
010059
GTIN
5906301810582
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
35 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
36.08 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
9.68 kg / 94.93 N
Magnetic Induction ~ ?
170.30 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 35x5 / N38 are magnets made of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed traditional iron magnets. Thanks to their strength, they are often employed in devices that require strong adhesion. The standard temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet designated MW 35x5 / N38 and a magnetic force 9.68 kg has a weight of only 36.08 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of silver to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the website for the latest information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very practical in various applications, they can also constitute certain risk. Because of their strong magnetic power, they can attract metallic objects with great force, which can lead to damaging skin as well as other surfaces, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. In short, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with other metals and then shaping and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to preserve them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical neodymium magnet with classification N50 and N52 is a powerful and strong magnetic piece designed as a cylinder, featuring high force and universal applicability. Competitive price, 24h delivery, ruggedness and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetism, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after ten years, the performance loss is only ~1% (based on calculations),
  • They protect against demagnetization induced by surrounding electromagnetic environments very well,
  • In other words, due to the metallic nickel coating, the magnet obtains an professional appearance,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their usage potential,
  • Important function in advanced technical fields – they serve a purpose in data storage devices, electromechanical systems, medical equipment along with sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall durability,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
  • Possible threat due to small fragments may arise, in case of ingestion, which is significant in the context of child safety. Moreover, miniature parts from these assemblies can interfere with diagnostics when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Exercise Caution with Neodymium Magnets

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Magnets made of neodymium are especially fragile, which leads to their breakage.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Safety precautions!

In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98