MW 40x8 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010069
GTIN: 5906301810681
Diameter Ø [±0,1 mm]
40 mm
Height [±0,1 mm]
8 mm
Weight
75.4 g
Magnetization Direction
↑ axial
Load capacity
17.69 kg / 173.48 N
Magnetic Induction
230.22 mT
Coating
[NiCuNi] nickel
31.27 ZŁ with VAT / pcs + price for transport
25.42 ZŁ net + 23% VAT / pcs
22.36 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Want to talk magnets?
Contact us by phone
+48 22 499 98 98
if you prefer contact us through
inquiry form
through our site.
Lifting power and form of magnets can be verified on our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
MW 40x8 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as gold, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their high retention, neodymium magnets are valued for these benefits:
- They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
- They show exceptional resistance to demagnetization from outside magnetic sources,
- Because of the reflective layer of gold, the component looks high-end,
- Magnetic induction on the surface of these magnets is notably high,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- The ability for accurate shaping as well as adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
- Key role in cutting-edge sectors – they find application in data storage devices, rotating machines, healthcare devices and other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them ideal in small systems
Disadvantages of NdFeB magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall durability,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
- Health risk related to magnet particles may arise, when consumed by mistake, which is notable in the family environments. Furthermore, miniature parts from these assemblies might interfere with diagnostics when ingested,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Handle Neodymium Magnets Carefully
Neodymium magnetic are highly fragile, they easily crack and can become damaged.
Neodymium magnetic are fragile as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or in their path when they attract. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.
Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
It is essential to maintain neodymium magnets away from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Safety rules!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.