e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. All "magnets" on our website are in stock for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for fishing F400 GOLD

Where to buy powerful neodymium magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in difficult, demanding weather conditions, including in the rain and snow see more...

magnetic holders

Holders with magnets can be applied to facilitate production, exploring underwater areas, or finding meteorites made of metal more...

We promise to ship ordered magnets on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 40x8 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010069

GTIN: 5906301810681

5

Diameter Ø [±0,1 mm]

40 mm

Height [±0,1 mm]

8 mm

Weight

75.4 g

Magnetization Direction

↑ axial

Load capacity

17.69 kg / 173.48 N

Magnetic Induction

230.22 mT

Coating

[NiCuNi] nickel

31.27 with VAT / pcs + price for transport

25.42 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
25.42 ZŁ
31.27 ZŁ
price from 30 pcs
23.89 ZŁ
29.39 ZŁ
price from 100 pcs
22.37 ZŁ
27.51 ZŁ

Need advice?

Call us now +48 888 99 98 98 or let us know by means of inquiry form through our site.
Specifications as well as structure of a magnet can be calculated on our magnetic mass calculator.

Same-day shipping for orders placed before 14:00.

MW 40x8 / N38 - cylindrical magnet

Specification/characteristics MW 40x8 / N38 - cylindrical magnet
properties
values
Cat. no.
010069
GTIN
5906301810681
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
40 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
75.4 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
17.69 kg / 173.48 N
Magnetic Induction ~ ?
230.22 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 40x8 / N38 are magnets created of neodymium in a cylinder form. They are known for their very strong magnetic properties, which exceed traditional ferrite magnets. Because of their strength, they are frequently employed in products that require strong adhesion. The typical temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet named MW 40x8 / N38 with a magnetic lifting capacity of 17.69 kg weighs only 75.4 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of gold to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the site for the current information and promotions, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are useful in many applications, they can also pose certain risk. Due to their strong magnetic power, they can pull metallic objects with great force, which can lead to damaging skin as well as other surfaces, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with other metals and then forming and thermal processing. Their amazing magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as silver, to protect them from environmental factors and prolong their durability. Temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A cylindrical magnet with classification N52 and N50 is a powerful and highly strong magnetic product shaped like a cylinder, featuring strong holding power and universal applicability. Competitive price, 24h delivery, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They retain their attractive force for almost 10 years – the drop is just ~1% (in theory),
  • They remain magnetized despite exposure to strong external fields,
  • The use of a polished gold surface provides a smooth finish,
  • They have exceptional magnetic induction on the surface of the magnet,
  • With the right combination of materials, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which broadens their usage potential,
  • Wide application in advanced technical fields – they are utilized in hard drives, electromechanical systems, medical equipment and high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which allows for use in small systems

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and additionally increases its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is important in the context of child safety. Moreover, minuscule fragments from these products may interfere with diagnostics after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Highest magnetic holding forcewhat it depends on?

The given lifting capacity of the magnet means the maximum lifting force, assessed under optimal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, however under parallel forces the lifting capacity is smaller. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnetic are highly susceptible to damage, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a significant pressure or even a fracture.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Pay attention!

In order to show why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98