MW 40x15 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010067
GTIN: 5906301810667
Diameter Ø [±0,1 mm]
40 mm
Height [±0,1 mm]
15 mm
Weight
141.37 g
Magnetization Direction
↑ axial
Load capacity
33.18 kg / 325.38 N
Magnetic Induction
371.91 mT
Coating
[NiCuNi] nickel
65.93 ZŁ with VAT / pcs + price for transport
53.60 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have doubts?
Call us
+48 888 99 98 98
if you prefer contact us using
form
through our site.
Parameters and structure of magnets can be verified on our
online calculation tool.
Same-day shipping for orders placed before 14:00.
MW 40x15 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as silver, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their notable magnetic energy, neodymium magnets have these key benefits:
- They do not lose their even during around 10 years – the decrease of strength is only ~1% (theoretically),
- They protect against demagnetization induced by external magnetic influence remarkably well,
- The use of a mirror-like silver surface provides a smooth finish,
- They have exceptional magnetic induction on the surface of the magnet,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
- With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Important function in cutting-edge sectors – they are used in hard drives, rotating machines, medical equipment along with high-tech tools,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally increases its overall resistance,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
- Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
- Potential hazard linked to microscopic shards may arise, especially if swallowed, which is important in the context of child safety. It should also be noted that small elements from these devices may hinder health screening when ingested,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Magnetic strength at its maximum – what it depends on?
The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in the best circumstances, namely:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- in a perpendicular direction of force
- under standard ambient temperature
Impact of factors on magnetic holding capacity in practice
The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a slight gap {between} the magnet and the plate lowers the holding force.
Safety Precautions
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets may crack or crumble with careless connecting to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnets are delicate and can easily crack and get damaged.
Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets should not be around youngest children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Exercise caution!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.
