e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our proposal. All "neodymium magnets" in our store are available for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase powerful neodymium magnet? Magnet holders in airtight, solid enclosure are ideally suited for use in difficult weather, including during rain and snow see more...

magnets with holders

Holders with magnets can be applied to improve production, exploring underwater areas, or locating space rocks made of metal more...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships in 2 days

MW 40x15 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010067

GTIN: 5906301810667

0

Diameter Ø [±0,1 mm]

40 mm

Height [±0,1 mm]

15 mm

Weight

141.37 g

Magnetization Direction

↑ axial

Load capacity

33.18 kg / 325.38 N

Magnetic Induction

371.91 mT

Coating

[NiCuNi] nickel

65.93 with VAT / pcs + price for transport

53.60 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
53.60 ZŁ
65.93 ZŁ
price from 20 pcs
50.38 ZŁ
61.97 ZŁ
price from 50 pcs
47.17 ZŁ
58.02 ZŁ

Not sure which magnet to buy?

Give us a call +48 888 99 98 98 or drop us a message using contact form the contact page.
Weight as well as form of a neodymium magnet can be tested with our magnetic mass calculator.

Orders submitted before 14:00 will be dispatched today!

MW 40x15 / N38 - cylindrical magnet

Specification/characteristics MW 40x15 / N38 - cylindrical magnet
properties
values
Cat. no.
010067
GTIN
5906301810667
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
40 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
141.37 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
33.18 kg / 325.38 N
Magnetic Induction ~ ?
371.91 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

These rod-shaped products are made of high-performance rare earth material. This ensures powerful holding force while maintaining a small size. Model MW 40x15 / N38 has a pull force of approx. 33.18 kg. The cylindrical form makes them perfect for mounting in drilled holes, generators and filters. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
We recommend installation by gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). We recommend two-component (epoxy) glues, which do not react with the nickel coating. Avoid press-fitting with force, as neodymium is a ceramic sinter and can easily crack upon impact.
The 'N' number indicates the maximum strength of the material. The higher the number, the stronger the magnet for the same size. N38 is the most common choice, which provides an optimal price-to-power ratio. For demanding applications, we recommend grade N52, which is the most powerful option on the market.
These products have a standard coating of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects in indoor conditions. This is not a hermetic barrier. During underwater use, the coating may be damaged, leading to corrosion and loss of power. For such tasks, we suggest enclosing them in a sealed housing or ordering a special version.
These products are the heart of many industrial devices. They are used in generators and wind turbines and in magnetic separators for cleaning bulk products. Additionally, due to their precise dimensions, they are ideal for measuring systems and sensors.
These magnets retain their properties up to 80 degrees Celsius. Above this value, the magnet loses its strength. If you need resistance to higher temperatures (e.g. 120°C, 150°C, 200°C), we offer H, SH, or UH series on request. It is worth knowing that neodymium magnets do not tolerate thermal shock well.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetism, neodymium magnets have these key benefits:

  • Their power is maintained, and after approximately 10 years, it drops only by ~1% (according to research),
  • They protect against demagnetization induced by ambient electromagnetic environments effectively,
  • Thanks to the glossy finish and silver coating, they have an aesthetic appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for fine forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Key role in modern technologies – they serve a purpose in HDDs, electric drives, clinical machines or even technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also strengthens its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can rust. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Possible threat from tiny pieces may arise, when consumed by mistake, which is significant in the protection of children. Additionally, tiny components from these products have the potential to hinder health screening if inside the body,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum lifting capacity of the magnetwhat contributes to it?

The given holding capacity of the magnet means the highest holding force, calculated in ideal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a polished steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate lowers the lifting capacity.

Exercise Caution with Neodymium Magnets

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Magnets made of neodymium are especially fragile, resulting in their breakage.

Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

 Keep neodymium magnets far from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will jump and touch together within a distance of several to almost 10 cm from each other.

Caution!

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98