MW 40x15 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010067
GTIN: 5906301810667
Diameter Ø [±0,1 mm]
40 mm
Height [±0,1 mm]
15 mm
Weight
141.37 g
Magnetization Direction
↑ axial
Load capacity
33.18 kg / 325.38 N
Magnetic Induction
371.91 mT
Coating
[NiCuNi] nickel
65.93 ZŁ with VAT / pcs + price for transport
53.60 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure what to buy?
Pick up the phone and ask
+48 888 99 98 98
if you prefer get in touch through
form
through our site.
Weight as well as structure of neodymium magnets can be estimated using our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
MW 40x15 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as gold, to shield them from environmental factors and prolong their durability. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They do not lose their even during around 10 years – the decrease of strength is only ~1% (theoretically),
- They protect against demagnetization induced by surrounding electromagnetic environments effectively,
- By applying a shiny layer of silver, the element gains a clean look,
- Magnetic induction on the surface of these magnets is notably high,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for fine forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
- Significant impact in new technology industries – they are utilized in HDDs, rotating machines, healthcare devices and technologically developed systems,
- Thanks to their power density, small magnets offer high magnetic performance, in miniature format,
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall robustness,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
- Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
- Safety concern due to small fragments may arise, when consumed by mistake, which is notable in the family environments. It should also be noted that small elements from these magnets can disrupt scanning after being swallowed,
- Due to a complex production process, their cost is relatively high,
Highest magnetic holding force – what affects it?
The given pulling force of the magnet represents the maximum force, calculated under optimal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
Practical aspects of lifting capacity – factors
Practical lifting force is determined by factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a small distance {between} the magnet and the plate reduces the holding force.
Notes with Neodymium Magnets
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
If have a finger between or alternatively on the path of attracting magnets, there may be a serious cut or even a fracture.
Neodymium magnets should not be in the vicinity youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are especially fragile, resulting in damage.
Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Pay attention!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.