MPL 10x5x1.5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020114
GTIN/EAN: 5906301811206
length
10 mm [±0,1 mm]
Width
5 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
0.56 g
Magnetization Direction
↑ axial
Load capacity
0.86 kg / 8.47 N
Magnetic Induction
239.33 mT / 2393 Gs
Coating
[NiCuNi] Nickel
0.381 ZŁ with VAT / pcs + price for transport
0.310 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
alternatively get in touch using
request form
the contact page.
Weight along with form of neodymium magnets can be checked using our
magnetic mass calculator.
Same-day processing for orders placed before 14:00.
Product card - MPL 10x5x1.5 / N38 - lamellar magnet
Specification / characteristics - MPL 10x5x1.5 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020114 |
| GTIN/EAN | 5906301811206 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 10 mm [±0,1 mm] |
| Width | 5 mm [±0,1 mm] |
| Height | 1.5 mm [±0,1 mm] |
| Weight | 0.56 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.86 kg / 8.47 N |
| Magnetic Induction ~ ? | 239.33 mT / 2393 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the product - data
Presented data are the result of a mathematical analysis. Values were calculated on algorithms for the material Nd2Fe14B. Actual performance may deviate from the simulation results. Please consider these calculations as a preliminary roadmap during assembly planning.
Table 1: Static force (force vs distance) - power drop
MPL 10x5x1.5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2392 Gs
239.2 mT
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
low risk |
| 1 mm |
1814 Gs
181.4 mT
|
0.49 kg / 1.09 pounds
494.9 g / 4.9 N
|
low risk |
| 2 mm |
1242 Gs
124.2 mT
|
0.23 kg / 0.51 pounds
232.1 g / 2.3 N
|
low risk |
| 3 mm |
836 Gs
83.6 mT
|
0.11 kg / 0.23 pounds
105.1 g / 1.0 N
|
low risk |
| 5 mm |
399 Gs
39.9 mT
|
0.02 kg / 0.05 pounds
23.9 g / 0.2 N
|
low risk |
| 10 mm |
94 Gs
9.4 mT
|
0.00 kg / 0.00 pounds
1.3 g / 0.0 N
|
low risk |
| 15 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.00 pounds
0.2 g / 0.0 N
|
low risk |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
Table 2: Sliding force (wall)
MPL 10x5x1.5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 0.38 pounds
172.0 g / 1.7 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 0.22 pounds
98.0 g / 1.0 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.10 pounds
46.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.05 pounds
22.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 pounds
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MPL 10x5x1.5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.26 kg / 0.57 pounds
258.0 g / 2.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 0.38 pounds
172.0 g / 1.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.09 kg / 0.19 pounds
86.0 g / 0.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.43 kg / 0.95 pounds
430.0 g / 4.2 N
|
Table 4: Steel thickness (saturation) - power losses
MPL 10x5x1.5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.09 kg / 0.19 pounds
86.0 g / 0.8 N
|
| 1 mm |
|
0.22 kg / 0.47 pounds
215.0 g / 2.1 N
|
| 2 mm |
|
0.43 kg / 0.95 pounds
430.0 g / 4.2 N
|
| 3 mm |
|
0.65 kg / 1.42 pounds
645.0 g / 6.3 N
|
| 5 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
| 10 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
| 11 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
| 12 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
Table 5: Working in heat (stability) - power drop
MPL 10x5x1.5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
OK |
| 40 °C | -2.2% |
0.84 kg / 1.85 pounds
841.1 g / 8.3 N
|
OK |
| 60 °C | -4.4% |
0.82 kg / 1.81 pounds
822.2 g / 8.1 N
|
|
| 80 °C | -6.6% |
0.80 kg / 1.77 pounds
803.2 g / 7.9 N
|
|
| 100 °C | -28.8% |
0.61 kg / 1.35 pounds
612.3 g / 6.0 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MPL 10x5x1.5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.76 kg / 3.89 pounds
3 896 Gs
|
0.26 kg / 0.58 pounds
264 g / 2.6 N
|
N/A |
| 1 mm |
1.39 kg / 3.07 pounds
4 254 Gs
|
0.21 kg / 0.46 pounds
209 g / 2.1 N
|
1.26 kg / 2.77 pounds
~0 Gs
|
| 2 mm |
1.01 kg / 2.24 pounds
3 628 Gs
|
0.15 kg / 0.34 pounds
152 g / 1.5 N
|
0.91 kg / 2.01 pounds
~0 Gs
|
| 3 mm |
0.70 kg / 1.55 pounds
3 020 Gs
|
0.11 kg / 0.23 pounds
105 g / 1.0 N
|
0.63 kg / 1.39 pounds
~0 Gs
|
| 5 mm |
0.32 kg / 0.70 pounds
2 037 Gs
|
0.05 kg / 0.11 pounds
48 g / 0.5 N
|
0.29 kg / 0.63 pounds
~0 Gs
|
| 10 mm |
0.05 kg / 0.11 pounds
798 Gs
|
0.01 kg / 0.02 pounds
7 g / 0.1 N
|
0.04 kg / 0.10 pounds
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 pounds
188 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 pounds
17 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 pounds
10 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 pounds
6 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 pounds
4 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
3 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
2 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MPL 10x5x1.5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 10x5x1.5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
39.56 km/h
(10.99 m/s)
|
0.03 J | |
| 30 mm |
68.45 km/h
(19.02 m/s)
|
0.10 J | |
| 50 mm |
88.37 km/h
(24.55 m/s)
|
0.17 J | |
| 100 mm |
124.98 km/h
(34.72 m/s)
|
0.34 J |
Table 9: Coating parameters (durability)
MPL 10x5x1.5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 10x5x1.5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 281 Mx | 12.8 µWb |
| Pc Coefficient | 0.27 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 10x5x1.5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.86 kg | Standard |
| Water (riverbed) |
0.98 kg
(+0.12 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet holds just ~20% of its max power.
2. Efficiency vs thickness
*Thin metal sheet (e.g. computer case) severely reduces the holding force.
3. Power loss vs temp
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.27
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Pros as well as cons of neodymium magnets.
Strengths
- They have stable power, and over around 10 years their attraction force decreases symbolically – ~1% (according to theory),
- They have excellent resistance to weakening of magnetic properties due to opposing magnetic fields,
- The use of an metallic coating of noble metals (nickel, gold, silver) causes the element to present itself better,
- Neodymium magnets generate maximum magnetic induction on a contact point, which allows for strong attraction,
- Neodymium magnets are characterized by very high magnetic induction on the magnet surface and can work (depending on the form) even at a temperature of 230°C or more...
- Possibility of individual creating as well as optimizing to atypical applications,
- Versatile presence in future technologies – they serve a role in hard drives, brushless drives, medical devices, as well as other advanced devices.
- Relatively small size with high pulling force – neodymium magnets offer high power in small dimensions, which makes them useful in compact constructions
Disadvantages
- To avoid cracks upon strong impacts, we recommend using special steel housings. Such a solution protects the magnet and simultaneously improves its durability.
- When exposed to high temperature, neodymium magnets experience a drop in strength. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They oxidize in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- Due to limitations in creating threads and complex forms in magnets, we recommend using casing - magnetic mechanism.
- Potential hazard to health – tiny shards of magnets pose a threat, if swallowed, which becomes key in the aspect of protecting the youngest. Additionally, tiny parts of these products are able to complicate diagnosis medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Holding force characteristics
Highest magnetic holding force – what it depends on?
- with the use of a sheet made of special test steel, guaranteeing full magnetic saturation
- with a thickness no less than 10 mm
- characterized by even structure
- under conditions of no distance (metal-to-metal)
- under vertical force vector (90-degree angle)
- in stable room temperature
Lifting capacity in real conditions – factors
- Gap between surfaces – every millimeter of distance (caused e.g. by varnish or dirt) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
- Load vector – highest force is available only during perpendicular pulling. The shear force of the magnet along the plate is standardly several times smaller (approx. 1/5 of the lifting capacity).
- Wall thickness – the thinner the sheet, the weaker the hold. Magnetic flux penetrates through instead of converting into lifting capacity.
- Material composition – different alloys attracts identically. High carbon content worsen the attraction effect.
- Plate texture – smooth surfaces ensure maximum contact, which improves force. Rough surfaces weaken the grip.
- Heat – neodymium magnets have a negative temperature coefficient. When it is hot they lose power, and in frost gain strength (up to a certain limit).
Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, however under shearing force the holding force is lower. Moreover, even a minimal clearance between the magnet’s surface and the plate decreases the load capacity.
Safe handling of neodymium magnets
Avoid contact if allergic
Studies show that nickel (the usual finish) is a common allergen. If your skin reacts to metals, avoid direct skin contact and choose coated magnets.
Flammability
Powder produced during cutting of magnets is combustible. Avoid drilling into magnets without proper cooling and knowledge.
Beware of splinters
Neodymium magnets are ceramic materials, which means they are very brittle. Collision of two magnets will cause them shattering into small pieces.
Medical interference
People with a heart stimulator must maintain an safe separation from magnets. The magnetism can stop the functioning of the implant.
This is not a toy
Only for adults. Tiny parts pose a choking risk, causing intestinal necrosis. Store out of reach of children and animals.
Crushing risk
Danger of trauma: The attraction force is so immense that it can cause hematomas, pinching, and broken bones. Protective gloves are recommended.
Threat to electronics
Equipment safety: Neodymium magnets can ruin payment cards and delicate electronics (heart implants, hearing aids, timepieces).
Immense force
Before use, check safety instructions. Uncontrolled attraction can break the magnet or injure your hand. Think ahead.
Thermal limits
Standard neodymium magnets (grade N) lose power when the temperature exceeds 80°C. Damage is permanent.
GPS Danger
Navigation devices and smartphones are highly susceptible to magnetism. Direct contact with a powerful NdFeB magnet can ruin the internal compass in your phone.
