MPL 10x5x1.5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020114
GTIN/EAN: 5906301811206
length
10 mm [±0,1 mm]
Width
5 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
0.56 g
Magnetization Direction
↑ axial
Load capacity
0.86 kg / 8.47 N
Magnetic Induction
239.33 mT / 2393 Gs
Coating
[NiCuNi] Nickel
0.381 ZŁ with VAT / pcs + price for transport
0.310 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
otherwise get in touch via
our online form
the contact form page.
Weight as well as structure of a neodymium magnet can be calculated with our
force calculator.
Orders submitted before 14:00 will be dispatched today!
Detailed specification - MPL 10x5x1.5 / N38 - lamellar magnet
Specification / characteristics - MPL 10x5x1.5 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020114 |
| GTIN/EAN | 5906301811206 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 10 mm [±0,1 mm] |
| Width | 5 mm [±0,1 mm] |
| Height | 1.5 mm [±0,1 mm] |
| Weight | 0.56 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.86 kg / 8.47 N |
| Magnetic Induction ~ ? | 239.33 mT / 2393 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the assembly - data
The following data are the outcome of a physical analysis. Results rely on algorithms for the class Nd2Fe14B. Operational conditions may differ. Use these data as a reference point for designers.
Table 1: Static force (pull vs distance) - power drop
MPL 10x5x1.5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2392 Gs
239.2 mT
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
low risk |
| 1 mm |
1814 Gs
181.4 mT
|
0.49 kg / 1.09 pounds
494.9 g / 4.9 N
|
low risk |
| 2 mm |
1242 Gs
124.2 mT
|
0.23 kg / 0.51 pounds
232.1 g / 2.3 N
|
low risk |
| 3 mm |
836 Gs
83.6 mT
|
0.11 kg / 0.23 pounds
105.1 g / 1.0 N
|
low risk |
| 5 mm |
399 Gs
39.9 mT
|
0.02 kg / 0.05 pounds
23.9 g / 0.2 N
|
low risk |
| 10 mm |
94 Gs
9.4 mT
|
0.00 kg / 0.00 pounds
1.3 g / 0.0 N
|
low risk |
| 15 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.00 pounds
0.2 g / 0.0 N
|
low risk |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
Table 2: Slippage load (wall)
MPL 10x5x1.5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 0.38 pounds
172.0 g / 1.7 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 0.22 pounds
98.0 g / 1.0 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.10 pounds
46.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.05 pounds
22.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 pounds
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MPL 10x5x1.5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.26 kg / 0.57 pounds
258.0 g / 2.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 0.38 pounds
172.0 g / 1.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.09 kg / 0.19 pounds
86.0 g / 0.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.43 kg / 0.95 pounds
430.0 g / 4.2 N
|
Table 4: Steel thickness (saturation) - power losses
MPL 10x5x1.5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.09 kg / 0.19 pounds
86.0 g / 0.8 N
|
| 1 mm |
|
0.22 kg / 0.47 pounds
215.0 g / 2.1 N
|
| 2 mm |
|
0.43 kg / 0.95 pounds
430.0 g / 4.2 N
|
| 3 mm |
|
0.65 kg / 1.42 pounds
645.0 g / 6.3 N
|
| 5 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
| 10 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
| 11 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
| 12 mm |
|
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
Table 5: Working in heat (stability) - thermal limit
MPL 10x5x1.5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.86 kg / 1.90 pounds
860.0 g / 8.4 N
|
OK |
| 40 °C | -2.2% |
0.84 kg / 1.85 pounds
841.1 g / 8.3 N
|
OK |
| 60 °C | -4.4% |
0.82 kg / 1.81 pounds
822.2 g / 8.1 N
|
|
| 80 °C | -6.6% |
0.80 kg / 1.77 pounds
803.2 g / 7.9 N
|
|
| 100 °C | -28.8% |
0.61 kg / 1.35 pounds
612.3 g / 6.0 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MPL 10x5x1.5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.76 kg / 3.89 pounds
3 896 Gs
|
0.26 kg / 0.58 pounds
264 g / 2.6 N
|
N/A |
| 1 mm |
1.39 kg / 3.07 pounds
4 254 Gs
|
0.21 kg / 0.46 pounds
209 g / 2.1 N
|
1.26 kg / 2.77 pounds
~0 Gs
|
| 2 mm |
1.01 kg / 2.24 pounds
3 628 Gs
|
0.15 kg / 0.34 pounds
152 g / 1.5 N
|
0.91 kg / 2.01 pounds
~0 Gs
|
| 3 mm |
0.70 kg / 1.55 pounds
3 020 Gs
|
0.11 kg / 0.23 pounds
105 g / 1.0 N
|
0.63 kg / 1.39 pounds
~0 Gs
|
| 5 mm |
0.32 kg / 0.70 pounds
2 037 Gs
|
0.05 kg / 0.11 pounds
48 g / 0.5 N
|
0.29 kg / 0.63 pounds
~0 Gs
|
| 10 mm |
0.05 kg / 0.11 pounds
798 Gs
|
0.01 kg / 0.02 pounds
7 g / 0.1 N
|
0.04 kg / 0.10 pounds
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 pounds
188 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 pounds
17 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 pounds
10 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 pounds
6 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 pounds
4 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
3 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
2 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Safety (HSE) (electronics) - precautionary measures
MPL 10x5x1.5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (cracking risk) - collision effects
MPL 10x5x1.5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
39.56 km/h
(10.99 m/s)
|
0.03 J | |
| 30 mm |
68.45 km/h
(19.02 m/s)
|
0.10 J | |
| 50 mm |
88.37 km/h
(24.55 m/s)
|
0.17 J | |
| 100 mm |
124.98 km/h
(34.72 m/s)
|
0.34 J |
Table 9: Coating parameters (durability)
MPL 10x5x1.5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 10x5x1.5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 281 Mx | 12.8 µWb |
| Pc Coefficient | 0.27 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 10x5x1.5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.86 kg | Standard |
| Water (riverbed) |
0.98 kg
(+0.12 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical surface, the magnet retains just ~20% of its nominal pull.
2. Efficiency vs thickness
*Thin steel (e.g. 0.5mm PC case) severely weakens the holding force.
3. Heat tolerance
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.27
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also deals
Pros and cons of Nd2Fe14B magnets.
Benefits
- They retain attractive force for around ten years – the loss is just ~1% (in theory),
- They feature excellent resistance to magnetism drop when exposed to external fields,
- The use of an refined layer of noble metals (nickel, gold, silver) causes the element to look better,
- Magnets are characterized by excellent magnetic induction on the active area,
- Thanks to resistance to high temperature, they can operate (depending on the form) even at temperatures up to 230°C and higher...
- In view of the option of accurate forming and customization to specialized requirements, neodymium magnets can be modeled in a wide range of geometric configurations, which increases their versatility,
- Universal use in future technologies – they are commonly used in mass storage devices, electric drive systems, medical devices, also complex engineering applications.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Weaknesses
- At strong impacts they can crack, therefore we recommend placing them in steel cases. A metal housing provides additional protection against damage and increases the magnet's durability.
- When exposed to high temperature, neodymium magnets experience a drop in force. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets usually rust. To use them in conditions outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which prevent oxidation and corrosion.
- We recommend a housing - magnetic mechanism, due to difficulties in producing nuts inside the magnet and complicated forms.
- Health risk related to microscopic parts of magnets can be dangerous, when accidentally swallowed, which is particularly important in the aspect of protecting the youngest. Additionally, small components of these magnets are able to be problematic in diagnostics medical when they are in the body.
- Due to complex production process, their price is higher than average,
Pull force analysis
Magnetic strength at its maximum – what affects it?
- using a plate made of low-carbon steel, acting as a magnetic yoke
- possessing a thickness of min. 10 mm to avoid saturation
- with an ground contact surface
- without any clearance between the magnet and steel
- during pulling in a direction perpendicular to the mounting surface
- in neutral thermal conditions
Determinants of lifting force in real conditions
- Distance – existence of any layer (paint, dirt, air) interrupts the magnetic circuit, which lowers power steeply (even by 50% at 0.5 mm).
- Force direction – declared lifting capacity refers to pulling vertically. When slipping, the magnet exhibits significantly lower power (typically approx. 20-30% of maximum force).
- Metal thickness – thin material does not allow full use of the magnet. Part of the magnetic field passes through the material instead of converting into lifting capacity.
- Material composition – not every steel attracts identically. Alloy additives weaken the attraction effect.
- Plate texture – ground elements ensure maximum contact, which increases field saturation. Rough surfaces reduce efficiency.
- Thermal factor – high temperature weakens magnetic field. Too high temperature can permanently damage the magnet.
Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the lifting capacity is smaller. Moreover, even a small distance between the magnet and the plate decreases the lifting capacity.
H&S for magnets
Dust is flammable
Drilling and cutting of neodymium magnets poses a fire hazard. Magnetic powder reacts violently with oxygen and is hard to extinguish.
Electronic devices
Do not bring magnets close to a wallet, computer, or screen. The magnetism can permanently damage these devices and wipe information from cards.
Compass and GPS
GPS units and mobile phones are extremely sensitive to magnetic fields. Close proximity with a powerful NdFeB magnet can decalibrate the internal compass in your phone.
Crushing force
Risk of injury: The pulling power is so great that it can cause blood blisters, pinching, and broken bones. Protective gloves are recommended.
Heat sensitivity
Keep cool. Neodymium magnets are susceptible to temperature. If you need resistance above 80°C, look for special high-temperature series (H, SH, UH).
ICD Warning
Patients with a pacemaker have to maintain an absolute distance from magnets. The magnetism can stop the functioning of the implant.
Protective goggles
Protect your eyes. Magnets can fracture upon violent connection, launching shards into the air. Wear goggles.
Allergy Warning
It is widely known that nickel (standard magnet coating) is a strong allergen. If your skin reacts to metals, refrain from direct skin contact or opt for coated magnets.
Do not underestimate power
Be careful. Neodymium magnets act from a long distance and snap with massive power, often quicker than you can react.
Product not for children
Product intended for adults. Small elements can be swallowed, leading to serious injuries. Keep away from children and animals.
