tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" on our website are available for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase strong magnet? Magnetic holders in solid and airtight steel casing are excellent for use in challenging weather conditions, including in the rain and snow check...

magnets with holders

Magnetic holders can be applied to facilitate production processes, underwater exploration, or searching for space rocks made of metal more information...

Enjoy shipping of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 60x10x5 / N38 - lamellar magnet

lamellar magnet

Catalog no 020474

GTIN: 5906301811947

5

length [±0,1 mm]

60 mm

Width [±0,1 mm]

10 mm

Height [±0,1 mm]

5 mm

Weight

22.5 g

Magnetization Direction

↑ axial

Load capacity

9.67 kg / 94.83 N

Magnetic Induction

315.09 mT

Coating

[NiCuNi] nickel

19.00 with VAT / pcs + price for transport

15.45 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
15.45 ZŁ
19.00 ZŁ
price from 39 pcs
14.52 ZŁ
17.86 ZŁ
price from 143 pcs
13.60 ZŁ
16.72 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 60x10x5 / N38 - lamellar magnet

Specification/characteristics MPL 60x10x5 / N38 - lamellar magnet
properties
values
Cat. no.
020474
GTIN
5906301811947
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
60 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
22.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
9.67 kg / 94.83 N
Magnetic Induction ~ ?
315.09 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 60x10x5 / N38 are magnets created from neodymium in a rectangular form. They are appreciated for their very strong magnetic properties, which outshine ordinary ferrite magnets.
Due to their power, flat magnets are regularly used in structures that need very strong attraction.
Typical temperature resistance of these magnets is 80 °C, but depending on the dimensions, this value can increase.
Moreover, flat magnets often have special coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet labeled MPL 60x10x5 / N38 and a magnetic force 9.67 kg which weighs a mere 22.5 grams, making it the ideal choice for projects needing a flat magnet.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which cause them being the best choice for various uses:
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often utilized in many devices, such as sensors, stepper motors, or speakers, where the flat shape is necessary for their operation.
Mounting: Their flat shape makes it easier mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility designers greater flexibility in placing them in structures, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can provide better stability, reducing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet is dependent on the specific project and requirements. In certain cases, other shapes, such as cylindrical or spherical, are more appropriate.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron, nickel, materials with cobalt or alloys of metals with magnetic properties. Moreover, magnets may weaker affect some other metals, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of the magnetic field, which is generated by the movement of electric charges within their material. The magnetic field of magnets creates attractive interactions, which affect materials containing iron or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which attract each other when they are different. Similar poles, such as two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
Not all materials react to magnets, and examples of such substances are plastic, glass items, wooden materials or most gemstones. Moreover, magnets do not affect certain metals, such as copper, aluminum materials, copper, aluminum, and gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to avoid placing magnets near such devices.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Significant importance in modern technologies – are utilized in hard drives, electric motors, medical apparatus or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk to health from tiny fragments of magnets are risky, in case of ingestion, which is crucial in the aspect of protecting young children. Additionally, small elements of these magnets are able to hinder the diagnostic process after entering the body.

Handle Neodymium Magnets Carefully

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets jump and also touch each other mutually within a radius of several to around 10 cm from each other.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Magnets made of neodymium are extremely fragile, resulting in breaking.

Magnets made of neodymium are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Exercise caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98