MPL 60x10x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020474
GTIN/EAN: 5906301811947
length
60 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
22.5 g
Magnetization Direction
↑ axial
Load capacity
18.16 kg / 178.10 N
Magnetic Induction
315.09 mT / 3151 Gs
Coating
[NiCuNi] Nickel
19.00 ZŁ with VAT / pcs + price for transport
15.45 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 888 99 98 98
otherwise drop us a message through
request form
through our site.
Lifting power as well as form of a magnet can be analyzed on our
online calculation tool.
Same-day shipping for orders placed before 14:00.
Technical - MPL 60x10x5 / N38 - lamellar magnet
Specification / characteristics - MPL 60x10x5 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020474 |
| GTIN/EAN | 5906301811947 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 60 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 22.5 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 18.16 kg / 178.10 N |
| Magnetic Induction ~ ? | 315.09 mT / 3151 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the assembly - technical parameters
These data are the result of a physical calculation. Results are based on algorithms for the material Nd2Fe14B. Operational performance might slightly deviate from the simulation results. Use these data as a preliminary roadmap when designing systems.
Table 1: Static force (force vs gap) - interaction chart
MPL 60x10x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3149 Gs
314.9 mT
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
critical level |
| 1 mm |
2731 Gs
273.1 mT
|
13.66 kg / 30.11 lbs
13658.3 g / 134.0 N
|
critical level |
| 2 mm |
2302 Gs
230.2 mT
|
9.70 kg / 21.38 lbs
9698.4 g / 95.1 N
|
strong |
| 3 mm |
1912 Gs
191.2 mT
|
6.70 kg / 14.76 lbs
6696.5 g / 65.7 N
|
strong |
| 5 mm |
1317 Gs
131.7 mT
|
3.18 kg / 7.00 lbs
3176.9 g / 31.2 N
|
strong |
| 10 mm |
598 Gs
59.8 mT
|
0.65 kg / 1.44 lbs
653.8 g / 6.4 N
|
weak grip |
| 15 mm |
330 Gs
33.0 mT
|
0.20 kg / 0.44 lbs
199.2 g / 2.0 N
|
weak grip |
| 20 mm |
205 Gs
20.5 mT
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
weak grip |
| 30 mm |
96 Gs
9.6 mT
|
0.02 kg / 0.04 lbs
16.9 g / 0.2 N
|
weak grip |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
|
weak grip |
Table 2: Vertical hold (vertical surface)
MPL 60x10x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.63 kg / 8.01 lbs
3632.0 g / 35.6 N
|
| 1 mm | Stal (~0.2) |
2.73 kg / 6.02 lbs
2732.0 g / 26.8 N
|
| 2 mm | Stal (~0.2) |
1.94 kg / 4.28 lbs
1940.0 g / 19.0 N
|
| 3 mm | Stal (~0.2) |
1.34 kg / 2.95 lbs
1340.0 g / 13.1 N
|
| 5 mm | Stal (~0.2) |
0.64 kg / 1.40 lbs
636.0 g / 6.2 N
|
| 10 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
130.0 g / 1.3 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MPL 60x10x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
5.45 kg / 12.01 lbs
5448.0 g / 53.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.63 kg / 8.01 lbs
3632.0 g / 35.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.82 kg / 4.00 lbs
1816.0 g / 17.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
9.08 kg / 20.02 lbs
9080.0 g / 89.1 N
|
Table 4: Steel thickness (substrate influence) - power losses
MPL 60x10x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.91 kg / 2.00 lbs
908.0 g / 8.9 N
|
| 1 mm |
|
2.27 kg / 5.00 lbs
2270.0 g / 22.3 N
|
| 2 mm |
|
4.54 kg / 10.01 lbs
4540.0 g / 44.5 N
|
| 3 mm |
|
6.81 kg / 15.01 lbs
6810.0 g / 66.8 N
|
| 5 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
| 10 mm |
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
| 11 mm |
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
| 12 mm |
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
Table 5: Working in heat (material behavior) - thermal limit
MPL 60x10x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
OK |
| 40 °C | -2.2% |
17.76 kg / 39.16 lbs
17760.5 g / 174.2 N
|
OK |
| 60 °C | -4.4% |
17.36 kg / 38.27 lbs
17361.0 g / 170.3 N
|
|
| 80 °C | -6.6% |
16.96 kg / 37.39 lbs
16961.4 g / 166.4 N
|
|
| 100 °C | -28.8% |
12.93 kg / 28.51 lbs
12929.9 g / 126.8 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MPL 60x10x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
36.69 kg / 80.89 lbs
4 464 Gs
|
5.50 kg / 12.13 lbs
5503 g / 54.0 N
|
N/A |
| 1 mm |
32.13 kg / 70.84 lbs
5 895 Gs
|
4.82 kg / 10.63 lbs
4820 g / 47.3 N
|
28.92 kg / 63.76 lbs
~0 Gs
|
| 2 mm |
27.59 kg / 60.83 lbs
5 463 Gs
|
4.14 kg / 9.13 lbs
4139 g / 40.6 N
|
24.83 kg / 54.75 lbs
~0 Gs
|
| 3 mm |
23.37 kg / 51.53 lbs
5 027 Gs
|
3.51 kg / 7.73 lbs
3506 g / 34.4 N
|
21.03 kg / 46.37 lbs
~0 Gs
|
| 5 mm |
16.31 kg / 35.97 lbs
4 200 Gs
|
2.45 kg / 5.39 lbs
2447 g / 24.0 N
|
14.68 kg / 32.37 lbs
~0 Gs
|
| 10 mm |
6.42 kg / 14.15 lbs
2 635 Gs
|
0.96 kg / 2.12 lbs
963 g / 9.4 N
|
5.78 kg / 12.74 lbs
~0 Gs
|
| 20 mm |
1.32 kg / 2.91 lbs
1 195 Gs
|
0.20 kg / 0.44 lbs
198 g / 1.9 N
|
1.19 kg / 2.62 lbs
~0 Gs
|
| 50 mm |
0.07 kg / 0.15 lbs
274 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.08 lbs
192 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
140 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
104 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
80 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MPL 60x10x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 10.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 8.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 6.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 4.5 cm |
| Car key | 50 Gs (5.0 mT) | 4.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - collision effects
MPL 60x10x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
29.29 km/h
(8.14 m/s)
|
0.74 J | |
| 30 mm |
49.65 km/h
(13.79 m/s)
|
2.14 J | |
| 50 mm |
64.07 km/h
(17.80 m/s)
|
3.56 J | |
| 100 mm |
90.60 km/h
(25.17 m/s)
|
7.13 J |
Table 9: Anti-corrosion coating durability
MPL 60x10x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 60x10x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 14 969 Mx | 149.7 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 60x10x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 18.16 kg | Standard |
| Water (riverbed) |
20.79 kg
(+2.63 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical wall, the magnet retains merely a fraction of its nominal pull.
2. Steel thickness impact
*Thin steel (e.g. 0.5mm PC case) drastically reduces the holding force.
3. Temperature resistance
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also deals
Strengths and weaknesses of Nd2Fe14B magnets.
Advantages
- They do not lose magnetism, even during nearly 10 years – the reduction in power is only ~1% (based on measurements),
- They feature excellent resistance to weakening of magnetic properties as a result of external magnetic sources,
- In other words, due to the aesthetic finish of nickel, the element becomes visually attractive,
- The surface of neodymium magnets generates a intense magnetic field – this is a key feature,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- Considering the ability of flexible shaping and customization to specialized projects, magnetic components can be modeled in a broad palette of geometric configurations, which amplifies use scope,
- Versatile presence in electronics industry – they are commonly used in computer drives, electromotive mechanisms, diagnostic systems, also other advanced devices.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Disadvantages
- Susceptibility to cracking is one of their disadvantages. Upon intense impact they can break. We advise keeping them in a special holder, which not only secures them against impacts but also increases their durability
- We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
- When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which prevent oxidation and corrosion.
- We suggest cover - magnetic holder, due to difficulties in realizing threads inside the magnet and complicated forms.
- Health risk related to microscopic parts of magnets pose a threat, if swallowed, which gains importance in the context of child safety. It is also worth noting that small components of these magnets can complicate diagnosis medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Lifting parameters
Breakaway strength of the magnet in ideal conditions – what affects it?
- with the contact of a yoke made of low-carbon steel, guaranteeing maximum field concentration
- with a thickness of at least 10 mm
- with an ground touching surface
- with direct contact (no impurities)
- for force applied at a right angle (in the magnet axis)
- at standard ambient temperature
Key elements affecting lifting force
- Gap between magnet and steel – even a fraction of a millimeter of distance (caused e.g. by varnish or unevenness) drastically reduces the magnet efficiency, often by half at just 0.5 mm.
- Direction of force – highest force is obtained only during perpendicular pulling. The shear force of the magnet along the plate is typically many times lower (approx. 1/5 of the lifting capacity).
- Wall thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of converting into lifting capacity.
- Steel type – mild steel attracts best. Alloy steels decrease magnetic properties and lifting capacity.
- Surface structure – the more even the plate, the larger the contact zone and stronger the hold. Roughness creates an air distance.
- Thermal factor – hot environment weakens magnetic field. Too high temperature can permanently damage the magnet.
Lifting capacity was assessed using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under parallel forces the holding force is lower. Additionally, even a slight gap between the magnet and the plate decreases the holding force.
Warnings
Warning for allergy sufferers
Nickel alert: The Ni-Cu-Ni coating consists of nickel. If skin irritation appears, cease working with magnets and wear gloves.
Flammability
Mechanical processing of neodymium magnets carries a risk of fire hazard. Neodymium dust reacts violently with oxygen and is difficult to extinguish.
Serious injuries
Mind your fingers. Two powerful magnets will join immediately with a force of massive weight, destroying anything in their path. Be careful!
Risk of cracking
Despite metallic appearance, neodymium is delicate and not impact-resistant. Do not hit, as the magnet may crumble into sharp, dangerous pieces.
This is not a toy
Only for adults. Tiny parts can be swallowed, leading to serious injuries. Keep out of reach of kids and pets.
Precision electronics
Remember: neodymium magnets produce a field that interferes with sensitive sensors. Keep a separation from your mobile, tablet, and GPS.
Safe distance
Intense magnetic fields can destroy records on payment cards, HDDs, and other magnetic media. Keep a distance of min. 10 cm.
Implant safety
For implant holders: Strong magnetic fields disrupt medical devices. Maintain at least 30 cm distance or ask another person to handle the magnets.
Operating temperature
Monitor thermal conditions. Exposing the magnet to high heat will permanently weaken its properties and pulling force.
Respect the power
Use magnets with awareness. Their huge power can shock even experienced users. Stay alert and respect their power.
