MPL 60x10x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020474
GTIN/EAN: 5906301811947
length
60 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
22.5 g
Magnetization Direction
↑ axial
Load capacity
18.16 kg / 178.10 N
Magnetic Induction
315.09 mT / 3151 Gs
Coating
[NiCuNi] Nickel
19.00 ZŁ with VAT / pcs + price for transport
15.45 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 888 99 98 98
if you prefer send us a note through
request form
the contact section.
Force along with form of a neodymium magnet can be estimated on our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical details - MPL 60x10x5 / N38 - lamellar magnet
Specification / characteristics - MPL 60x10x5 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020474 |
| GTIN/EAN | 5906301811947 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 60 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 22.5 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 18.16 kg / 178.10 N |
| Magnetic Induction ~ ? | 315.09 mT / 3151 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the assembly - technical parameters
These information represent the direct effect of a physical analysis. Results rely on models for the class Nd2Fe14B. Real-world parameters may differ. Use these calculations as a preliminary roadmap when designing systems.
Table 1: Static pull force (pull vs distance) - characteristics
MPL 60x10x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3149 Gs
314.9 mT
|
18.16 kg / 40.04 LBS
18160.0 g / 178.1 N
|
crushing |
| 1 mm |
2731 Gs
273.1 mT
|
13.66 kg / 30.11 LBS
13658.3 g / 134.0 N
|
crushing |
| 2 mm |
2302 Gs
230.2 mT
|
9.70 kg / 21.38 LBS
9698.4 g / 95.1 N
|
strong |
| 3 mm |
1912 Gs
191.2 mT
|
6.70 kg / 14.76 LBS
6696.5 g / 65.7 N
|
strong |
| 5 mm |
1317 Gs
131.7 mT
|
3.18 kg / 7.00 LBS
3176.9 g / 31.2 N
|
strong |
| 10 mm |
598 Gs
59.8 mT
|
0.65 kg / 1.44 LBS
653.8 g / 6.4 N
|
safe |
| 15 mm |
330 Gs
33.0 mT
|
0.20 kg / 0.44 LBS
199.2 g / 2.0 N
|
safe |
| 20 mm |
205 Gs
20.5 mT
|
0.08 kg / 0.17 LBS
77.0 g / 0.8 N
|
safe |
| 30 mm |
96 Gs
9.6 mT
|
0.02 kg / 0.04 LBS
16.9 g / 0.2 N
|
safe |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 LBS
1.8 g / 0.0 N
|
safe |
Table 2: Vertical hold (wall)
MPL 60x10x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.63 kg / 8.01 LBS
3632.0 g / 35.6 N
|
| 1 mm | Stal (~0.2) |
2.73 kg / 6.02 LBS
2732.0 g / 26.8 N
|
| 2 mm | Stal (~0.2) |
1.94 kg / 4.28 LBS
1940.0 g / 19.0 N
|
| 3 mm | Stal (~0.2) |
1.34 kg / 2.95 LBS
1340.0 g / 13.1 N
|
| 5 mm | Stal (~0.2) |
0.64 kg / 1.40 LBS
636.0 g / 6.2 N
|
| 10 mm | Stal (~0.2) |
0.13 kg / 0.29 LBS
130.0 g / 1.3 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.09 LBS
40.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 LBS
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 LBS
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MPL 60x10x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
5.45 kg / 12.01 LBS
5448.0 g / 53.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.63 kg / 8.01 LBS
3632.0 g / 35.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.82 kg / 4.00 LBS
1816.0 g / 17.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
9.08 kg / 20.02 LBS
9080.0 g / 89.1 N
|
Table 4: Steel thickness (saturation) - power losses
MPL 60x10x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.91 kg / 2.00 LBS
908.0 g / 8.9 N
|
| 1 mm |
|
2.27 kg / 5.00 LBS
2270.0 g / 22.3 N
|
| 2 mm |
|
4.54 kg / 10.01 LBS
4540.0 g / 44.5 N
|
| 3 mm |
|
6.81 kg / 15.01 LBS
6810.0 g / 66.8 N
|
| 5 mm |
|
11.35 kg / 25.02 LBS
11350.0 g / 111.3 N
|
| 10 mm |
|
18.16 kg / 40.04 LBS
18160.0 g / 178.1 N
|
| 11 mm |
|
18.16 kg / 40.04 LBS
18160.0 g / 178.1 N
|
| 12 mm |
|
18.16 kg / 40.04 LBS
18160.0 g / 178.1 N
|
Table 5: Thermal stability (stability) - thermal limit
MPL 60x10x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
18.16 kg / 40.04 LBS
18160.0 g / 178.1 N
|
OK |
| 40 °C | -2.2% |
17.76 kg / 39.16 LBS
17760.5 g / 174.2 N
|
OK |
| 60 °C | -4.4% |
17.36 kg / 38.27 LBS
17361.0 g / 170.3 N
|
|
| 80 °C | -6.6% |
16.96 kg / 37.39 LBS
16961.4 g / 166.4 N
|
|
| 100 °C | -28.8% |
12.93 kg / 28.51 LBS
12929.9 g / 126.8 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MPL 60x10x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
36.69 kg / 80.89 LBS
4 464 Gs
|
5.50 kg / 12.13 LBS
5503 g / 54.0 N
|
N/A |
| 1 mm |
32.13 kg / 70.84 LBS
5 895 Gs
|
4.82 kg / 10.63 LBS
4820 g / 47.3 N
|
28.92 kg / 63.76 LBS
~0 Gs
|
| 2 mm |
27.59 kg / 60.83 LBS
5 463 Gs
|
4.14 kg / 9.13 LBS
4139 g / 40.6 N
|
24.83 kg / 54.75 LBS
~0 Gs
|
| 3 mm |
23.37 kg / 51.53 LBS
5 027 Gs
|
3.51 kg / 7.73 LBS
3506 g / 34.4 N
|
21.03 kg / 46.37 LBS
~0 Gs
|
| 5 mm |
16.31 kg / 35.97 LBS
4 200 Gs
|
2.45 kg / 5.39 LBS
2447 g / 24.0 N
|
14.68 kg / 32.37 LBS
~0 Gs
|
| 10 mm |
6.42 kg / 14.15 LBS
2 635 Gs
|
0.96 kg / 2.12 LBS
963 g / 9.4 N
|
5.78 kg / 12.74 LBS
~0 Gs
|
| 20 mm |
1.32 kg / 2.91 LBS
1 195 Gs
|
0.20 kg / 0.44 LBS
198 g / 1.9 N
|
1.19 kg / 2.62 LBS
~0 Gs
|
| 50 mm |
0.07 kg / 0.15 LBS
274 Gs
|
0.01 kg / 0.02 LBS
10 g / 0.1 N
|
0.06 kg / 0.14 LBS
~0 Gs
|
| 60 mm |
0.03 kg / 0.08 LBS
192 Gs
|
0.01 kg / 0.01 LBS
5 g / 0.1 N
|
0.03 kg / 0.07 LBS
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 LBS
140 Gs
|
0.00 kg / 0.01 LBS
3 g / 0.0 N
|
0.02 kg / 0.04 LBS
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 LBS
104 Gs
|
0.00 kg / 0.00 LBS
2 g / 0.0 N
|
0.01 kg / 0.02 LBS
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 LBS
80 Gs
|
0.00 kg / 0.00 LBS
1 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 LBS
62 Gs
|
0.00 kg / 0.00 LBS
1 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Safety (HSE) (implants) - warnings
MPL 60x10x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 10.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 8.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 6.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 4.5 cm |
| Car key | 50 Gs (5.0 mT) | 4.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - warning
MPL 60x10x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
29.29 km/h
(8.14 m/s)
|
0.74 J | |
| 30 mm |
49.65 km/h
(13.79 m/s)
|
2.14 J | |
| 50 mm |
64.07 km/h
(17.80 m/s)
|
3.56 J | |
| 100 mm |
90.60 km/h
(25.17 m/s)
|
7.13 J |
Table 9: Coating parameters (durability)
MPL 60x10x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 60x10x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 14 969 Mx | 149.7 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 60x10x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 18.16 kg | Standard |
| Water (riverbed) |
20.79 kg
(+2.63 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical wall, the magnet holds just approx. 20-30% of its max power.
2. Plate thickness effect
*Thin steel (e.g. computer case) drastically reduces the holding force.
3. Thermal stability
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also products
Strengths and weaknesses of Nd2Fe14B magnets.
Pros
- They retain full power for around 10 years – the drop is just ~1% (according to analyses),
- They have excellent resistance to magnetic field loss as a result of external magnetic sources,
- In other words, due to the metallic layer of nickel, the element gains a professional look,
- Neodymium magnets create maximum magnetic induction on a small surface, which ensures high operational effectiveness,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the form) even at high temperatures reaching 230°C or more...
- Thanks to the ability of free forming and customization to unique requirements, NdFeB magnets can be modeled in a wide range of shapes and sizes, which expands the range of possible applications,
- Wide application in innovative solutions – they are commonly used in computer drives, motor assemblies, diagnostic systems, as well as other advanced devices.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in tiny dimensions, which makes them useful in miniature devices
Weaknesses
- Susceptibility to cracking is one of their disadvantages. Upon intense impact they can fracture. We advise keeping them in a strong case, which not only protects them against impacts but also raises their durability
- We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- They oxidize in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- Due to limitations in realizing threads and complex forms in magnets, we recommend using cover - magnetic mechanism.
- Health risk to health – tiny shards of magnets can be dangerous, in case of ingestion, which becomes key in the context of child health protection. Additionally, small components of these products are able to be problematic in diagnostics medical in case of swallowing.
- Due to expensive raw materials, their price is relatively high,
Holding force characteristics
Maximum holding power of the magnet – what affects it?
- on a block made of mild steel, optimally conducting the magnetic flux
- whose transverse dimension is min. 10 mm
- with an ideally smooth touching surface
- under conditions of ideal adhesion (surface-to-surface)
- under perpendicular force direction (90-degree angle)
- at conditions approx. 20°C
Determinants of lifting force in real conditions
- Air gap (betwixt the magnet and the plate), since even a tiny clearance (e.g. 0.5 mm) leads to a reduction in lifting capacity by up to 50% (this also applies to varnish, corrosion or dirt).
- Loading method – catalog parameter refers to pulling vertically. When attempting to slide, the magnet exhibits much less (typically approx. 20-30% of nominal force).
- Metal thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of converting into lifting capacity.
- Plate material – mild steel gives the best results. Higher carbon content decrease magnetic properties and holding force.
- Plate texture – ground elements ensure maximum contact, which improves field saturation. Rough surfaces reduce efficiency.
- Thermal factor – high temperature reduces pulling force. Too high temperature can permanently damage the magnet.
Lifting capacity was assessed using a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under parallel forces the lifting capacity is smaller. In addition, even a small distance between the magnet’s surface and the plate reduces the load capacity.
H&S for magnets
Machining danger
Powder produced during cutting of magnets is flammable. Avoid drilling into magnets unless you are an expert.
Crushing force
Protect your hands. Two powerful magnets will join instantly with a force of massive weight, destroying anything in their path. Exercise extreme caution!
Maximum temperature
Regular neodymium magnets (N-type) lose power when the temperature surpasses 80°C. Damage is permanent.
ICD Warning
Health Alert: Strong magnets can turn off heart devices and defibrillators. Do not approach if you have medical devices.
Caution required
Before starting, check safety instructions. Sudden snapping can destroy the magnet or injure your hand. Be predictive.
Sensitization to coating
A percentage of the population experience a contact allergy to nickel, which is the common plating for neodymium magnets. Extended handling might lead to skin redness. It is best to wear safety gloves.
Swallowing risk
Neodymium magnets are not suitable for play. Accidental ingestion of multiple magnets may result in them attracting across intestines, which constitutes a critical condition and requires urgent medical intervention.
GPS and phone interference
Be aware: neodymium magnets generate a field that disrupts precision electronics. Maintain a separation from your mobile, device, and navigation systems.
Electronic devices
Do not bring magnets close to a wallet, computer, or TV. The magnetic field can destroy these devices and wipe information from cards.
Shattering risk
Protect your eyes. Magnets can explode upon violent connection, launching sharp fragments into the air. Eye protection is mandatory.
