MPL 60x10x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020474
GTIN: 5906301811947
length [±0,1 mm]
60 mm
Width [±0,1 mm]
10 mm
Height [±0,1 mm]
5 mm
Weight
22.5 g
Magnetization Direction
↑ axial
Load capacity
9.67 kg / 94.83 N
Magnetic Induction
315.09 mT
Coating
[NiCuNi] nickel
19.00 ZŁ with VAT / pcs + price for transport
15.45 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us
+48 22 499 98 98
alternatively let us know via
request form
the contact page.
Strength as well as shape of a neodymium magnet can be reviewed on our
magnetic mass calculator.
Orders placed before 14:00 will be shipped the same business day.
MPL 60x10x5 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
- They remain magnetized despite exposure to magnetic noise,
- Thanks to the glossy finish and nickel coating, they have an aesthetic appearance,
- They possess significant magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their usage potential,
- Significant impact in cutting-edge sectors – they are used in HDDs, electric drives, medical equipment and sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which allows for use in compact constructions
Disadvantages of magnetic elements:
- They can break when subjected to a strong impact. If the magnets are exposed to mechanical hits, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally reinforces its overall robustness,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to damp air can rust. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing complex structures directly in the magnet,
- Possible threat related to magnet particles may arise, when consumed by mistake, which is notable in the family environments. Additionally, small elements from these products can complicate medical imaging when ingested,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum magnetic pulling force – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, measured in the best circumstances, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a polished side
- with zero air gap
- under perpendicular detachment force
- at room temperature
Determinants of practical lifting force of a magnet
Practical lifting force is dependent on elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Caution with Neodymium Magnets
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Magnets are not toys, youngest should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Magnets made of neodymium are highly susceptible to damage, resulting in their cracking.
Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Avoid bringing neodymium magnets close to a phone or GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Safety precautions!
In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.
